Single-junction,lattice-mismatched In0.69Ga0.31As thermophotovoltaic(TPV) devices each with a bandgap of 0.6 eV are grown on InP substrate by metal-organic chemical vapour deposition(MOCVD).Compositionally undulat...Single-junction,lattice-mismatched In0.69Ga0.31As thermophotovoltaic(TPV) devices each with a bandgap of 0.6 eV are grown on InP substrate by metal-organic chemical vapour deposition(MOCVD).Compositionally undulating stepgraded InAsyP1-y buffer layers with a lattice mismatch of ~1.2% are used to mitigate the effect of lattice mismatch between the device layers and the InP substrate.With an optimized buffer thickness,the In0.69Ga0.31As active layers grown on the buffer display a high crystal quality with no measurable tetragonal distortion.High-performance single-junction devices are demonstrated,with an open-circuit voltage of 0.215 V and a photovoltaic conversion efficiency of 6.9% at a short-circuit current density of 47.6 mA/cm2,which are measured under the standard solar simulator of air mass 1.5-global(AM 1.5 G).展开更多
Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lie...Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FFtC) is a good candidate of magnetized targets due to its translatable, compressible, high /3 and high energy density properties. Dynamic formation process of high density FFtC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2-2. 7cm, the average density is 1.3× 1016 cm-3, and the average temperature is 137eV.展开更多
Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-p...Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.展开更多
micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smal...micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 61176128)the Knowledge Innovation Project of the Chinese Academy of SciencesSuzhou Municipal Solar Cell Research Project,China (Grant No. SYG201145)
文摘Single-junction,lattice-mismatched In0.69Ga0.31As thermophotovoltaic(TPV) devices each with a bandgap of 0.6 eV are grown on InP substrate by metal-organic chemical vapour deposition(MOCVD).Compositionally undulating stepgraded InAsyP1-y buffer layers with a lattice mismatch of ~1.2% are used to mitigate the effect of lattice mismatch between the device layers and the InP substrate.With an optimized buffer thickness,the In0.69Ga0.31As active layers grown on the buffer display a high crystal quality with no measurable tetragonal distortion.High-performance single-junction devices are demonstrated,with an open-circuit voltage of 0.215 V and a photovoltaic conversion efficiency of 6.9% at a short-circuit current density of 47.6 mA/cm2,which are measured under the standard solar simulator of air mass 1.5-global(AM 1.5 G).
基金Supported by the Development Foundation of China Academy of Engineering Physics under Grant No 2011B0402009the National Natural Science Foundation of China under Grant Nos 11375163,11575029 and 11175028
文摘Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FFtC) is a good candidate of magnetized targets due to its translatable, compressible, high /3 and high energy density properties. Dynamic formation process of high density FFtC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2-2. 7cm, the average density is 1.3× 1016 cm-3, and the average temperature is 137eV.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.61425021)the Natural Natural Science Foundation of China(Grant Nos.11374296,61376054,61475153,and 61604132)
文摘Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.
文摘micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.