With the deployment of Connected and Automated Vehicles in the coming decades,road transportation will experience a significant upheaval.CAVs(Connected and Autonomous Vehicles)have been a main emphasis of Transportati...With the deployment of Connected and Automated Vehicles in the coming decades,road transportation will experience a significant upheaval.CAVs(Connected and Autonomous Vehicles)have been a main emphasis of Transportation and the automotive sector,and the future of transportation system analysis is widely anticipated.The examination and future development of CAVs technology has been the subject of numerous researches.However,as three essential kinds of road users,pedestrians,bicyclists,and motorcyclists have experienced little to no handling.We explored the influence of CAVs on non-motorized mobility in this article and seven various issues that CAVs face in the environment.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic r...This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm.展开更多
Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless commu...Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless communication advances,vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention.In this paper,the recent studies on the planning and decision-making technologies at intersections are primarily overviewed.The general planning and decision-making approaches are presented,which include graph-based approach,prediction base approach,optimization-based approach and machine learning based approach.Since connected autonomous vehicles(CAVs)is the future direction for the automated driving area,we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies.Both four-way signalized and unsignalized intersection(s)are investigated under purely automated driving traffic and mixed traffic.The study benefit from current strategies,protocols,and simulation tools to help researchers identify the presented approaches’challenges and determine the research gaps,and several remaining possible research problems that need to be solved in the future.展开更多
There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric ...There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric Vehicle(CAEV)technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking.Therefore,Traffic Flow Prediction(TFP)is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning(DL)techniques.In this view,the current research paper presents an artificial intelligence-based parallel autoencoder for TFP,abbreviated as AIPAE-TFP model in CAEV.The presented model involves two major processes namely,feature engineering and TFP.In feature engineering process,there are multiple stages involved such as feature construction,feature selection,and feature extraction.In addition to the above,a Support Vector Data Description(SVDD)model is also used in the filtration of anomaly points and smoothen the raw data.Finally,AIPAE model is applied to determine the predictive values of traffic flow.In order to illustrate the proficiency of the model’s predictive outcomes,a set of simulations was performed and the results were investigated under distinct aspects.The experimentation outcomes verified the effectual performance of the proposed AIPAE-TFP model over other methods.展开更多
Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional huma...Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.展开更多
This study investigates the challenges and opportunities pertaining to transportation policies that may arise as a result of emerging autonomous vehicle (AV) technologies. AV technologies can decrease the transporta...This study investigates the challenges and opportunities pertaining to transportation policies that may arise as a result of emerging autonomous vehicle (AV) technologies. AV technologies can decrease the transportation cost and increase accessibility to low-income households and persons with mobility issues. This emerging technology also has far-reaching applications and implications beyond all current expectations. This paper provides a comprehensive review of the relevant literature and explores a broad spectrum of issues from safety to machine ethics. An indispensable part of a prospective AV development is communication over cars and infrastructure (connected vehicles). A major knowledge gap exists in AV technology with respect to routing behaviors. Connected- vehicle technology provides a great opportunity to imple- ment an efficient and intelligent routing system. To this end, we propose a conceptual navigation model based on a fleet of AVs that are centrally dispatched over a network seeking system optimization literature on two fronts: (i) This study contributes to the it attempts to shed light on future opportunities as well as possible hurdles associated with AV technology; and (ii) it conceptualizes a navigation model for the AV which leads to highly efficient traffic circulations.展开更多
It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on...It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on the evaluation and potential development of CAVs technology;however, pedestrians and bicyclists, as two essential and important modes of the road users have seen little to no coverage. In response to the need for analyzing the impact of CAVs on non-motorized transportation, this paper develops a new model for the evaluation of the Level of Service (LOS) for pedestrians in a CAVs environment based on the Highway Capacity Manual (HCM). The HCM provides a methodology to assess the level of service for pedestrians and bicyclists on various types of intersections in urban areas. Five scenarios were created for simulation via VISSIM (a software) that corresponds to the different proportions of the CAVs and different signal systems in a typical traffic environment. Alternatively, the Surrogate Safety Assessment Model (SSAM) was selected for analyzing the safety performance of the five scenarios. Through computing and analyzing the results of simulation and SSAM, the latter portion of this paper focuses on the development of a new model for evaluating pedestrian LOS in urban areas which are based upon HCM standards which are suitable for CAVs environments. The results of this study are intended to inform the future efforts of engineers and/or policymakers and to provide them with a tool to conduct a comparison of capacity and LOS related to the impact of CAVs on pedestrians during the process of a transportation system transition to CAVs.展开更多
Motivated by the promising benefits of connected and autonomous vehicles (CAVs) in improving fuelefficiency, mitigating congestion, and enhancing safety, numerous theoretical models have been proposed to plan CAVmulti...Motivated by the promising benefits of connected and autonomous vehicles (CAVs) in improving fuelefficiency, mitigating congestion, and enhancing safety, numerous theoretical models have been proposed to plan CAVmultiple-step trajectories (time–specific speed/location trajectories) to accomplish various operations. However, limitedefforts have been made to develop proper trajectory control techniques to regulate vehicle movements to follow multiplesteptrajectories and test the performance of theoretical trajectory planning models with field experiments. Without aneffective control method, the benefits of theoretical models for CAV trajectory planning can be difficult to harvest. This studyproposes an online learning-based model predictive vehicle trajectory control structure to follow time–specific speed andlocation profiles. Unlike single-step controllers that are dominantly used in the literature, a multiple-step model predictivecontroller is adopted to control the vehicle’s longitudinal movements for higher accuracy. The model predictive controlleroutput (speed) cannot be interpreted by vehicles. A reinforcement learning agent is used to convert the speed value to thevehicle’s direct control variable (i.e., throttle/brake). The reinforcement learning agent captures real-time changes in theoperating environment. This is valuable in saving parameter calibration resources and improving trajectory control accuracy.A line tracking controller keeps vehicles on track. The proposed control structure is tested using reduced-scale robot cars.The adaptivity of the proposed control structure is demonstrated by changing the vehicle load. Then, experiments on twofundamental CAV platoon operations (i.e., platooning and split) show the effectiveness of the proposed trajectory controlstructure in regulating robot movements to follow time-specific reference trajectories.展开更多
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu...Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.展开更多
It is expected that for a long time the future road trafc will be composed of both regular vehicles(RVs)and connected autonomous vehicles(CAVs).As a vehicle-to-infrastructure technology dedicated to facilitating CAV u...It is expected that for a long time the future road trafc will be composed of both regular vehicles(RVs)and connected autonomous vehicles(CAVs).As a vehicle-to-infrastructure technology dedicated to facilitating CAV under the mixed trafc fow,roadside units(RSUs)can also improve the quality of information received by CAVs,thereby infuencing the routing behavior of CAV users.This paper explores the possibility of leveraging the RSU deployment to afect the route choices of both CAVs and RVs and the adoption rate of CAVs so as to reduce the network congestion and emissions.To this end,we frst establish a logit-based stochastic user equilibrium model to capture drivers’route choice and vehicle type choice behaviors provided the RSU deployment plan is given.Particularly,CAV users’perception error can be reduced by higher CAV penetration and denser RSUs deployed on the road due to the improved information quality.With the established equilibrium model,the RSU deployment problem is then formulated as a mathematical program with equilibrium constraints.An active-set algorithm is presented to solve the deployment problem efciently.Numerical results suggest that an optimal RSU deployment plan can efectively drive the system towards one with lower network delay and emissions.展开更多
Drivers are not far-sighted when they execute lane-changing manipulation.To address this issue,this study proposes a rule to improve vehicles'lane-changing decisions with accurate information of surrounding vehicl...Drivers are not far-sighted when they execute lane-changing manipulation.To address this issue,this study proposes a rule to improve vehicles'lane-changing decisions with accurate information of surrounding vehicles(e.g.time headway)-More specifically,connected and autonomous vehicles(CAVs)change lanes in advance if they find severer flow reducing in the lanes,while CAVs should maintain the car-following state if the variations of traffc flow in all lanes have a similar trend.To ilustrate the idea,this study frst calibrates two classic car-following models and a lane-changing model,and then conducts numerical simulations to illustrate the short-sighted decision of drivers.The study incorporates the idea into a lane-changing decision rule by changing the lane-changing model's pa-rameter,and conducts numerical tests to evaluate the effectiveness of the lane-changing decision rule in a multi-lane highway with a bottleneck.The results of this study indicate that the new lane-changing decision rule can substantially improve the throughput of the traffic flow,especially when the inflow exceeds the remaining capacity of the road.The lane-changing rule and results can bring insights into the control of CAVs,as well as the driver assistance system in connected vehicles.展开更多
针对智能网联汽车(Connected and Automated Vehicle,CAV)的加入所引发的交通震荡问题,以不同CAV市场渗透率的异质交通流为研究对象,引入CAV车队规模和强度,对异质车队组成进行划分并仿真复现交通震荡现象,采用时空轨迹图和加减速波传...针对智能网联汽车(Connected and Automated Vehicle,CAV)的加入所引发的交通震荡问题,以不同CAV市场渗透率的异质交通流为研究对象,引入CAV车队规模和强度,对异质车队组成进行划分并仿真复现交通震荡现象,采用时空轨迹图和加减速波传播速度可视化交通震荡的演变情况,同时选用加速、减速持续时间衡量交通震荡周期,速度标准差衡量交通震荡振幅.通过设计考虑CAV车队规模、强度和渗透率因素以及头车不同变速模式的交互实验,探究CAV车队要素和头车不同变速模式对交通震荡的影响.研究结果表明:CAV车队规模、强度和渗透率的提高均对震荡周期的减小具有积极影响;车队规模的扩大会增加震荡振幅,而车队强度的增强会减小震荡振幅;随着CAV渗透率的提高,震荡振幅先上升再下降,当渗透率为0.5~0.6时,震荡振幅达到峰值;头车急减速-急加速模式下的交通震荡周期和振幅最小,头车缓慢减速-缓慢加速模式下的交通震荡周期和振幅最大.展开更多
文摘With the deployment of Connected and Automated Vehicles in the coming decades,road transportation will experience a significant upheaval.CAVs(Connected and Autonomous Vehicles)have been a main emphasis of Transportation and the automotive sector,and the future of transportation system analysis is widely anticipated.The examination and future development of CAVs technology has been the subject of numerous researches.However,as three essential kinds of road users,pedestrians,bicyclists,and motorcyclists have experienced little to no handling.We explored the influence of CAVs on non-motorized mobility in this article and seven various issues that CAVs face in the environment.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金Project supported in part by the Fundamental Research Funds for the Central Universities (Grant No.2021JBZ107)the National Natural Science Foundation of China (Grant Nos.72288101 and 71931002)。
文摘This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm.
文摘Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless communication advances,vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention.In this paper,the recent studies on the planning and decision-making technologies at intersections are primarily overviewed.The general planning and decision-making approaches are presented,which include graph-based approach,prediction base approach,optimization-based approach and machine learning based approach.Since connected autonomous vehicles(CAVs)is the future direction for the automated driving area,we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies.Both four-way signalized and unsignalized intersection(s)are investigated under purely automated driving traffic and mixed traffic.The study benefit from current strategies,protocols,and simulation tools to help researchers identify the presented approaches’challenges and determine the research gaps,and several remaining possible research problems that need to be solved in the future.
文摘There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric Vehicle(CAEV)technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking.Therefore,Traffic Flow Prediction(TFP)is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning(DL)techniques.In this view,the current research paper presents an artificial intelligence-based parallel autoencoder for TFP,abbreviated as AIPAE-TFP model in CAEV.The presented model involves two major processes namely,feature engineering and TFP.In feature engineering process,there are multiple stages involved such as feature construction,feature selection,and feature extraction.In addition to the above,a Support Vector Data Description(SVDD)model is also used in the filtration of anomaly points and smoothen the raw data.Finally,AIPAE model is applied to determine the predictive values of traffic flow.In order to illustrate the proficiency of the model’s predictive outcomes,a set of simulations was performed and the results were investigated under distinct aspects.The experimentation outcomes verified the effectual performance of the proposed AIPAE-TFP model over other methods.
基金Project(71871013)supported by the National Natural Science Foundation of China。
文摘Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.
文摘This study investigates the challenges and opportunities pertaining to transportation policies that may arise as a result of emerging autonomous vehicle (AV) technologies. AV technologies can decrease the transportation cost and increase accessibility to low-income households and persons with mobility issues. This emerging technology also has far-reaching applications and implications beyond all current expectations. This paper provides a comprehensive review of the relevant literature and explores a broad spectrum of issues from safety to machine ethics. An indispensable part of a prospective AV development is communication over cars and infrastructure (connected vehicles). A major knowledge gap exists in AV technology with respect to routing behaviors. Connected- vehicle technology provides a great opportunity to imple- ment an efficient and intelligent routing system. To this end, we propose a conceptual navigation model based on a fleet of AVs that are centrally dispatched over a network seeking system optimization literature on two fronts: (i) This study contributes to the it attempts to shed light on future opportunities as well as possible hurdles associated with AV technology; and (ii) it conceptualizes a navigation model for the AV which leads to highly efficient traffic circulations.
文摘It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on the evaluation and potential development of CAVs technology;however, pedestrians and bicyclists, as two essential and important modes of the road users have seen little to no coverage. In response to the need for analyzing the impact of CAVs on non-motorized transportation, this paper develops a new model for the evaluation of the Level of Service (LOS) for pedestrians in a CAVs environment based on the Highway Capacity Manual (HCM). The HCM provides a methodology to assess the level of service for pedestrians and bicyclists on various types of intersections in urban areas. Five scenarios were created for simulation via VISSIM (a software) that corresponds to the different proportions of the CAVs and different signal systems in a typical traffic environment. Alternatively, the Surrogate Safety Assessment Model (SSAM) was selected for analyzing the safety performance of the five scenarios. Through computing and analyzing the results of simulation and SSAM, the latter portion of this paper focuses on the development of a new model for evaluating pedestrian LOS in urban areas which are based upon HCM standards which are suitable for CAVs environments. The results of this study are intended to inform the future efforts of engineers and/or policymakers and to provide them with a tool to conduct a comparison of capacity and LOS related to the impact of CAVs on pedestrians during the process of a transportation system transition to CAVs.
基金sponsored by the National Science Foundation(CMMI#1558887 and CMMI#1932452).
文摘Motivated by the promising benefits of connected and autonomous vehicles (CAVs) in improving fuelefficiency, mitigating congestion, and enhancing safety, numerous theoretical models have been proposed to plan CAVmultiple-step trajectories (time–specific speed/location trajectories) to accomplish various operations. However, limitedefforts have been made to develop proper trajectory control techniques to regulate vehicle movements to follow multiplesteptrajectories and test the performance of theoretical trajectory planning models with field experiments. Without aneffective control method, the benefits of theoretical models for CAV trajectory planning can be difficult to harvest. This studyproposes an online learning-based model predictive vehicle trajectory control structure to follow time–specific speed andlocation profiles. Unlike single-step controllers that are dominantly used in the literature, a multiple-step model predictivecontroller is adopted to control the vehicle’s longitudinal movements for higher accuracy. The model predictive controlleroutput (speed) cannot be interpreted by vehicles. A reinforcement learning agent is used to convert the speed value to thevehicle’s direct control variable (i.e., throttle/brake). The reinforcement learning agent captures real-time changes in theoperating environment. This is valuable in saving parameter calibration resources and improving trajectory control accuracy.A line tracking controller keeps vehicles on track. The proposed control structure is tested using reduced-scale robot cars.The adaptivity of the proposed control structure is demonstrated by changing the vehicle load. Then, experiments on twofundamental CAV platoon operations (i.e., platooning and split) show the effectiveness of the proposed trajectory controlstructure in regulating robot movements to follow time-specific reference trajectories.
基金funded by the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)of Zhang Jiang Laboratory and Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghai Rising Star Program(21QC1400900)Tongji–Westwell Autonomous Vehicle Joint Lab Project。
文摘Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.
基金the National Natural Science Foundation of China(72101153,72061127003)Shanghai Pujiang Program(2020PJC086)+2 种基金Shanghai Chenguang Program(21CGA72)the Joint Laboratory for Internet of Vehicles,Ministry of Education-China Mobile Communications Corporation(2020109)the NYU Shanghai Boost Fund.
文摘It is expected that for a long time the future road trafc will be composed of both regular vehicles(RVs)and connected autonomous vehicles(CAVs).As a vehicle-to-infrastructure technology dedicated to facilitating CAV under the mixed trafc fow,roadside units(RSUs)can also improve the quality of information received by CAVs,thereby infuencing the routing behavior of CAV users.This paper explores the possibility of leveraging the RSU deployment to afect the route choices of both CAVs and RVs and the adoption rate of CAVs so as to reduce the network congestion and emissions.To this end,we frst establish a logit-based stochastic user equilibrium model to capture drivers’route choice and vehicle type choice behaviors provided the RSU deployment plan is given.Particularly,CAV users’perception error can be reduced by higher CAV penetration and denser RSUs deployed on the road due to the improved information quality.With the established equilibrium model,the RSU deployment problem is then formulated as a mathematical program with equilibrium constraints.An active-set algorithm is presented to solve the deployment problem efciently.Numerical results suggest that an optimal RSU deployment plan can efectively drive the system towards one with lower network delay and emissions.
基金This work was supported by the National Natural Science Foundation of China(Grants No.72271248,71801227,72201149)the Nation Key Research and Develop-ment Program of China(Grant No.2020YFB1600400)+1 种基金the Higher-end Think-Tank Project of Central South University(Grant No.2022znzk07)the China Postdoctoral Science Foundation(Grant No.2022M711818).
文摘Drivers are not far-sighted when they execute lane-changing manipulation.To address this issue,this study proposes a rule to improve vehicles'lane-changing decisions with accurate information of surrounding vehicles(e.g.time headway)-More specifically,connected and autonomous vehicles(CAVs)change lanes in advance if they find severer flow reducing in the lanes,while CAVs should maintain the car-following state if the variations of traffc flow in all lanes have a similar trend.To ilustrate the idea,this study frst calibrates two classic car-following models and a lane-changing model,and then conducts numerical simulations to illustrate the short-sighted decision of drivers.The study incorporates the idea into a lane-changing decision rule by changing the lane-changing model's pa-rameter,and conducts numerical tests to evaluate the effectiveness of the lane-changing decision rule in a multi-lane highway with a bottleneck.The results of this study indicate that the new lane-changing decision rule can substantially improve the throughput of the traffic flow,especially when the inflow exceeds the remaining capacity of the road.The lane-changing rule and results can bring insights into the control of CAVs,as well as the driver assistance system in connected vehicles.
文摘针对智能网联汽车(Connected and Automated Vehicle,CAV)的加入所引发的交通震荡问题,以不同CAV市场渗透率的异质交通流为研究对象,引入CAV车队规模和强度,对异质车队组成进行划分并仿真复现交通震荡现象,采用时空轨迹图和加减速波传播速度可视化交通震荡的演变情况,同时选用加速、减速持续时间衡量交通震荡周期,速度标准差衡量交通震荡振幅.通过设计考虑CAV车队规模、强度和渗透率因素以及头车不同变速模式的交互实验,探究CAV车队要素和头车不同变速模式对交通震荡的影响.研究结果表明:CAV车队规模、强度和渗透率的提高均对震荡周期的减小具有积极影响;车队规模的扩大会增加震荡振幅,而车队强度的增强会减小震荡振幅;随着CAV渗透率的提高,震荡振幅先上升再下降,当渗透率为0.5~0.6时,震荡振幅达到峰值;头车急减速-急加速模式下的交通震荡周期和振幅最小,头车缓慢减速-缓慢加速模式下的交通震荡周期和振幅最大.