[Objective]It is revealed whether the similar maize transcriptional activator in CBF1 gene is regulatory cold resistance gene to lay the foundation for breeding new transgenic Forage Maize Varieties with high cold res...[Objective]It is revealed whether the similar maize transcriptional activator in CBF1 gene is regulatory cold resistance gene to lay the foundation for breeding new transgenic Forage Maize Varieties with high cold resistance ability.[Methods]In the present paper,the transcriptional factor gene CBF1 was Successfully cloned by PCR from the leaves of Arabidopsis.The sequence was preliminarily analyzed and plant expression vector was constructed.Then with agrobacterium-mediated transgene technique,CBF1 gene was introduced into maize SAUMZ1.[Results]PCR assay revealed that the CBF1 gene was integrated in the maize grass SAUMZ1 genome.Under different low temperature treatment,the relative electrolyte leakage percentage of transgenic plant was lower than Control.[Conclusion] The results showed that the cold-resistance of maize grass SAUMZ1 enhanced after transforming CBF1 gene.展开更多
In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidop...In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidopsis thaliana was used to transform mature seeds-derived embryogenic calli of four cultivars. A total of 112 transgenic plants were regenerated from 32 independent lines and verified by histochemical detection of GUS activity, PCR assay and Southern hybridization analysis. The transformation frequency ranged from 0.92 to 2.87% with apparent differences among the cultivars. Stress tolerances of transgenic plants were enhanced, which was shown by the facts that transgenic plants had distinct growth superiority and significantly higher survival rate than non-transformed ones under high salinity and high osmosis stresses, and that relative electronic conductivity of in vitro leaves treated with low and high temoeratures, dehvdration and high salinity stresses was 25-30% lower in transgenic plants than in control plants.In addition,it was observed that growth of transgenic plants was inhibited due to constitutive overexpression of CBF1 gene under normal environmental conditions.展开更多
基金Funded by "Twelfth five-year" rural areas of science and technology plan project "south high quality forage grass efficient production and processing using the key technology research and integrated demonstration bad17b03 (2011) and "Gongan gus beef cattle production integrated technology demonstration to promote" (12417)
文摘[Objective]It is revealed whether the similar maize transcriptional activator in CBF1 gene is regulatory cold resistance gene to lay the foundation for breeding new transgenic Forage Maize Varieties with high cold resistance ability.[Methods]In the present paper,the transcriptional factor gene CBF1 was Successfully cloned by PCR from the leaves of Arabidopsis.The sequence was preliminarily analyzed and plant expression vector was constructed.Then with agrobacterium-mediated transgene technique,CBF1 gene was introduced into maize SAUMZ1.[Results]PCR assay revealed that the CBF1 gene was integrated in the maize grass SAUMZ1 genome.Under different low temperature treatment,the relative electrolyte leakage percentage of transgenic plant was lower than Control.[Conclusion] The results showed that the cold-resistance of maize grass SAUMZ1 enhanced after transforming CBF1 gene.
文摘In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidopsis thaliana was used to transform mature seeds-derived embryogenic calli of four cultivars. A total of 112 transgenic plants were regenerated from 32 independent lines and verified by histochemical detection of GUS activity, PCR assay and Southern hybridization analysis. The transformation frequency ranged from 0.92 to 2.87% with apparent differences among the cultivars. Stress tolerances of transgenic plants were enhanced, which was shown by the facts that transgenic plants had distinct growth superiority and significantly higher survival rate than non-transformed ones under high salinity and high osmosis stresses, and that relative electronic conductivity of in vitro leaves treated with low and high temoeratures, dehvdration and high salinity stresses was 25-30% lower in transgenic plants than in control plants.In addition,it was observed that growth of transgenic plants was inhibited due to constitutive overexpression of CBF1 gene under normal environmental conditions.