ISO 17099:2014强调了以下几点:(1)客户个人信息和实验室的机密性;(2)实验室安全要求;(3)为考虑CBMN分析量的剂量评估和最低可分辨剂量,而用于建立校准参考剂量效应曲线的辐射源、剂量率和量程;(4)为CBMN分析法评分的血液采...ISO 17099:2014强调了以下几点:(1)客户个人信息和实验室的机密性;(2)实验室安全要求;(3)为考虑CBMN分析量的剂量评估和最低可分辨剂量,而用于建立校准参考剂量效应曲线的辐射源、剂量率和量程;(4)为CBMN分析法评分的血液采集、培植、成果以及样品制备的性能;(5)评分标准;(6)将双核细胞中的微核频率转化为吸收剂量的估算值;(7)结果报告;(8)质量保证与质量控制;展开更多
This paper discusses the problem of assessing the negative after-effects of low doses of ionising radiation exposure in humans. Radon and its decay daughter products are the most widespread source of such irradiation....This paper discusses the problem of assessing the negative after-effects of low doses of ionising radiation exposure in humans. Radon and its decay daughter products are the most widespread source of such irradiation. Miners (in both uranium and non-uranium mines) as well as laypeople in domestic life may be exposed to radon, making the problem of assessing the cytogenetic effects of exposure extremely crucial. One of the more promising test systems to assess the effect of radon is the cytokinesis-block micronucleus assay (CBMN) on peripheral blood lymphocytes, which has a number of advantages over other cytogenetic techniques. Recent progress and future prospects of this cytogenetic method are discussed here.展开更多
A study was conducted to evaluate the genotoxicity, if any, of the permitted synthetic food colorants used in India. Eight synthetic food colorants namely Erythrosine (E 127), Tartrazine (E 102), Ponceau 4R (E 12...A study was conducted to evaluate the genotoxicity, if any, of the permitted synthetic food colorants used in India. Eight synthetic food colorants namely Erythrosine (E 127), Tartrazine (E 102), Ponceau 4R (E 124), Sunset Yellow FCF (E 110), Brilliant Blue FCF (E133), Fast Green FCF (E143), Carmoisine (E122) and Indigo Carmine (E132) and their combination are used in sweets namely Ladu, Jilebi and Halwa in Calicut and suburban areas of Kerala, in India. The genotoxicity of the colorants alone and in combinations at different concentrations were evaluated by Cytokinesis Block Micronucleus (CBMN) Assay. It was observed that all the above colorants and their combinations could cause genotoxicity to human lymphocytes even at the permissible concentration of 100 ppm as per PFA (Prevention of Food Adulteration) Act of India. The toxicity varied from dye to dye and was proportional to their concentration. Combination of colors showed more toxicity than the individual components. Toxicity could be reduced drastically by reducing the concentration of the dyes at least 50% below the permissible limit. Permitted synthetic food colorants even at the permissible limit should be used with caution. This study demonstrated the need for redefining the permissible limit of the food colorants based on Admissible Daily Intake (ADI) as being practiced in developed countries.展开更多
文摘This paper discusses the problem of assessing the negative after-effects of low doses of ionising radiation exposure in humans. Radon and its decay daughter products are the most widespread source of such irradiation. Miners (in both uranium and non-uranium mines) as well as laypeople in domestic life may be exposed to radon, making the problem of assessing the cytogenetic effects of exposure extremely crucial. One of the more promising test systems to assess the effect of radon is the cytokinesis-block micronucleus assay (CBMN) on peripheral blood lymphocytes, which has a number of advantages over other cytogenetic techniques. Recent progress and future prospects of this cytogenetic method are discussed here.
文摘A study was conducted to evaluate the genotoxicity, if any, of the permitted synthetic food colorants used in India. Eight synthetic food colorants namely Erythrosine (E 127), Tartrazine (E 102), Ponceau 4R (E 124), Sunset Yellow FCF (E 110), Brilliant Blue FCF (E133), Fast Green FCF (E143), Carmoisine (E122) and Indigo Carmine (E132) and their combination are used in sweets namely Ladu, Jilebi and Halwa in Calicut and suburban areas of Kerala, in India. The genotoxicity of the colorants alone and in combinations at different concentrations were evaluated by Cytokinesis Block Micronucleus (CBMN) Assay. It was observed that all the above colorants and their combinations could cause genotoxicity to human lymphocytes even at the permissible concentration of 100 ppm as per PFA (Prevention of Food Adulteration) Act of India. The toxicity varied from dye to dye and was proportional to their concentration. Combination of colors showed more toxicity than the individual components. Toxicity could be reduced drastically by reducing the concentration of the dyes at least 50% below the permissible limit. Permitted synthetic food colorants even at the permissible limit should be used with caution. This study demonstrated the need for redefining the permissible limit of the food colorants based on Admissible Daily Intake (ADI) as being practiced in developed countries.