Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its me...BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.展开更多
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
基金Supported by the National Natural Science Foundation of China,No.81570543 and No.81560104
文摘BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.