The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simpli...The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simplicity,the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics(CFD)software.The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube and the surrounding air,taking into account the number of nozzles.It is observed that on increasing the spray flow strength,the heat flow intensity and extent of the liquid film in the system are enhanced accordingly.Moreover,the magnitude of droplet size significantly impacts heat transfer.A larger droplet size decreases evaporation in the air and enhances the deposition of droplets on the round tube.This facilitates the creation of the liquid film and enhances the passage of heat between the liquid film and air.Increasing the number of nozzles,while maintaining a constant spray flow rate,results in a decrease in the flow rate of each individual nozzle.This decrease is not favorable in terms of heat transfer.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal ...An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS.展开更多
针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建...针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建立了变压器热路模型,以计算绕组热点与顶部油温度;其次,采用粒子群优化(particle swarm optimization,PSO)算法拟合热路模型参数,并基于2台不同型号变压器的运行数据,对热路模型的计算精度与拟合参数适用性进行有效性验证;最后,参考GB/T1094.7负载导则给出的温升限值,基于温升特性提出了负荷能力评估模型。分析结果表明,该研究所提热路模型计算热点温度的误差不大于2.35℃,在工程允许范围内;正常周期性负荷下当环境温度低于1℃时,关闭1组子散热器后仍满足温升约束。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52376069)Shandong Province Science and Technology Small and Medium sized Enterprise Innovation Ability Enhancement Project(Grant No.2022TSGC2596).
文摘The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simplicity,the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics(CFD)software.The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube and the surrounding air,taking into account the number of nozzles.It is observed that on increasing the spray flow strength,the heat flow intensity and extent of the liquid film in the system are enhanced accordingly.Moreover,the magnitude of droplet size significantly impacts heat transfer.A larger droplet size decreases evaporation in the air and enhances the deposition of droplets on the round tube.This facilitates the creation of the liquid film and enhances the passage of heat between the liquid film and air.Increasing the number of nozzles,while maintaining a constant spray flow rate,results in a decrease in the flow rate of each individual nozzle.This decrease is not favorable in terms of heat transfer.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
文摘An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS.