Objective To screen the proteins associated with four-and-a-half LIM domains 3(FHL3) 3' untranslated region(3'UTR) in glioma cells. Methods Western blot was adopted to detect the regulatory effect of poly(C)-b...Objective To screen the proteins associated with four-and-a-half LIM domains 3(FHL3) 3' untranslated region(3'UTR) in glioma cells. Methods Western blot was adopted to detect the regulatory effect of poly(C)-binding protein 2(PCBP2) on FHL3. Biotin pull-down and sliver staining were employed to screen and verify the candidate binding proteins of FHL3 3'UTR. Then liquid chromatography-tandem mass spectrometry(LC-MS/MS) and molecule annotation system were used to identify and analyze the candidate binding proteins. Immunoprecipitation was conducted to study the interaction between PCBP2 and polypyrimidine tract-binding protein 1(PTBP1), a binding protein identified by LC-MS/MS. Results PCBP2 could bind to FHL3 mRNA 3'UTR-A and inhibited the expression of FHL3 in T98 G glioms cells. 22 candidate binding proteins were identified. Among them, there were 11 RNA binding proteins, including PCBP2. PTBP1 associated with FHL3 mRNA 3'UTR and interacted with PCBP2 protein. Conclusion PCBP2 and PTBP1 can both associate with FHL3 mRNA 3'UTR through forming a protein complex.展开更多
The elementary Ca^2+ release events, Ca2+ sparks, has been found for a quarter of century. However, the molecular regulation of the spark generator, the ryanodine receptor (RyR) on the sarcoplasmic reticulum, rema...The elementary Ca^2+ release events, Ca2+ sparks, has been found for a quarter of century. However, the molecular regulation of the spark generator, the ryanodine receptor (RyR) on the sarcoplasmic reticulum, remains obscure. Although each subunit of the RyR homotetramer has a site for FKS06-binding protein (FKBP), the role of FKBPs in modifying RyR Ca^2+ sparks has been debated for long. One of the reasons behind the controversy is that most previous studies detect spontaneous sparks, where the mixture with out-of-focus events and local wavelets prevents an accurate characterization of Ca^2+ sparks. In the pre- sent study, we detected Ca^2+ sparks triggered by single L-type Ca^2+ channels (LCCs) under loose-seal patch clamp conditions in FKS06-treated or FKBPI2.6 knockout cardiomyocytes. We found that FKBP dissociation both by FKS06 and by rapamycin decreased the Ca^2+ spark amplitude in ventricular cardiomyocytes. This change was neither due to decreased releasable Ca^2+ in the sarcoplasmic reticulum, nor explained by changed RyR sensitivity. Actually FKS06 increased the LCC-RyR coupling probability and curtailed the latency for an LCC to trigger a RyR Ca^2+ spark. FKBP12.6 knockout had similar effects as FKS06/rapamycin treatment, indicating that the decreased spark amplitude was attributable to the dissociation of FKBP12.6 rather than FKBP12. We also explained how decreased amplitude of spontaneous sparks after FKBP dissociation sometimes appears to be increased or unchanged due to inappropriate data processing. Our results provided firm evidence that without the inter-RyR coordination by functional FKBP12.6, the RyR recruitment during a Ca^2+ spark would be compromised despite the sensitization of individual RyRs.展开更多
Objective:To determine the effect of steroidogenic acute regulatory protein(StAR) overexpression on the levels of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1) and ATP-binding cassette transporter...Objective:To determine the effect of steroidogenic acute regulatory protein(StAR) overexpression on the levels of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1) and ATP-binding cassette transporter G1(ABCG1) in an endothelial cell line(bEnd.3).Methods:The StAR gene was induced in bEnd.3 cells with adenovirus infection.The infection efficiency was detected by fluorescence activated cell sorter(FACS) and fluorescence microscopy.The expressions of StAR gene and protein levels were detected by real-time polymerase chain reaction(PCR) and Western blot.The gene and protein levels of ABCA1 and ABCG1 were detected by real-time PCR and Western blot after StAR overexpression.Results:The result shows that StAR was successfully overexpressed in bEnd.3 cells by adenovirus infection.The mRNA and protein expressions of ABCA1 and ABCG1 were greatly increased by StAR overexpression in bEnd.3 cells.Conclusion:Overexpression of StAR increases ABCA1 and ABCG1 expressions in endothelial cells.展开更多
[Objective] To construct prokaryotic expression vectors encoding gene Erb3binding protein (EBP1), which plays important roles in regulating plant organ size from Nervilia fordii (Hance) Schltr. [Methods] PCR produ...[Objective] To construct prokaryotic expression vectors encoding gene Erb3binding protein (EBP1), which plays important roles in regulating plant organ size from Nervilia fordii (Hance) Schltr. [Methods] PCR products of NfEBP1 with particular restriction sites and expression vectors, pET-28 and pET-16b were digested. Ligation, transformation and selection were performed to construct the recombinant plasmids pET-28-NfEBP1 and pET-16-NfEBP1. The recombinant plasmids were transformed into E. coli BL21 using heat -shock transformation. [Results] Recombinant plasmids pET-28-NfEBP1-1188 and pET-16-NfEBP1-1188 were constructed and transformed into expressional host cells, E. coli BL21, and validated by colony PCR, sequencing and double digestion. [Conclusion] Prokaryotic expression vectors of EBP1 gene from N. fordii were successfully constructed, which laid the foundation for characterization of the gene function.展开更多
DNA double-strand break(DSB)is generally regarded as the most lethal of all DNA lesions after radiation.Ku80,DNA-PK catalytic subunit(DNA-PKcs)and ataxia telangiectasia mutated(ATM)proteins are major DSB repair protei...DNA double-strand break(DSB)is generally regarded as the most lethal of all DNA lesions after radiation.Ku80,DNA-PK catalytic subunit(DNA-PKcs)and ataxia telangiectasia mutated(ATM)proteins are major DSB repair proteins.In this study,survival fraction at 2Gy(SF2)values of eight human tumor cell lines(including four human cervical carcinoma cell lines HeLa,SiHa,C33A,Caski,three human breast carcinoma cell lines MCF-7,MDA-MB-231,MDA-MB-453,and one human lung carcinoma cell line A549)were acquired by clone formation assay,and western blot was applied to detect the expressions of Ku80,DNA-PKcs and ATM protein.The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis.We found that the expression of the same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference.The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2(r=0.723,P=0.043),but Ku80 and ATM expression had no correlation with SF2(P>0.05).Thesefindings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.展开更多
We used a new approach,protein folding shape code(PFSC),to predict the potential staurosporine binding sites in protein kinases.Firstly,all available three dimensioned(3D) structures of protein kinases in protein ...We used a new approach,protein folding shape code(PFSC),to predict the potential staurosporine binding sites in protein kinases.Firstly,all available three dimensioned(3D) structures of protein kinases in protein databank(PDB) were converted into one-dimensional PFSC description,based on which a PFSC-kinome library was constructed.Secondly,a set of protein kinase-staurosporine complexes were analyzed to define the common structural features of the binding sites.Thirdly,the structural features of the staurosporine binding sites were used to virtually screen the PFSC-kinome library to predict multiple protein receptors that have potential binding capacity for staurosporine.Collectively,the development of the similar method for predicting drug binding site demonstrates that virtual screening protein database can provide valuable information on drug discovery and understanding of pharmacological pathways.展开更多
Molecular modeling of interactions of four 7- or 8-substituted benzolactam-V8 (BLV) molecules with the cys2 activator-binding domain of protein kinase C (PKCδ) was carried out using molecular docking program Auto...Molecular modeling of interactions of four 7- or 8-substituted benzolactam-V8 (BLV) molecules with the cys2 activator-binding domain of protein kinase C (PKCδ) was carried out using molecular docking program Autodock. The docked models reveal that the hydroxymethyl group at the C(5) atom of the eight-membered ring of each BLV is bound at the bottom of the binding groove of the cys2 domain of PKCδ The BLV molecules make hydrogen bonds and hydrophobic interactions with PKCδ, which are similar to those in the crystal structure of the cys2 domain of PKCδ in complex with phorbol 13-acetate. BLV-1 does not contain a long side chain that is hydrophobic and necessary for membrane insertion, so that it would not be a potent modulator of PKCδ. The other three BLV molecules have long side chains substituted at C(7) or C(8) atoms, and it was predicted, based on the docking results, that they had the PKCδ-binding affinity in the order of BLV-2〉BLV-4〉BLV-3, and BLV-2 would be a potent activator of PKCδ.展开更多
Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway c...Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining(NHEJ)-mediated DSB repair pathway that rejoins DSB ends.New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination(HR)signaling.This review focuses on the up-and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair,which in turn promotes the sensitivity of poly(ADP-ribose)polymerase inhibitor(PARPi)in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.展开更多
Although microRNA-155(miR-155)is considered a pro-inflammatory mediator,cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells.In this study,we identified the drama...Although microRNA-155(miR-155)is considered a pro-inflammatory mediator,cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells.In this study,we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide(LPS)stimulation;223 genes were down-regulated and 85 genes were up-regulated,including suppressor of cytokine signaling 1(SOCS1)and transforming growth factor-β-activated kinase 1-binding protein 2(TAB2),two well-known genes involved in miR-155-mediated regulation of the Toll-like receptor 4(TLR4)signaling pathway.We also found that miR-155 acted as an anti-inflammatory mediator in the initial stage of LPS-induced inflammatory response mainly through repressing TAB2 protein translation,and as a proinflammatory mediator by down-regulating SOCS1 in the later stage.Meanwhile,overexpression of TAB23'untranslated region(UTR)in macrophages promoted the development of endotoxin tolerance by competing for binding with miR-155,which resulted in an elevated expression level of SOCS1 protein.These findings provide new insights for understanding the regulatory mechanisms in fine-tuning of LPS-induced innate immune response.展开更多
基金Supported by Peking Union Medical College Youth Fundthe Fundamental Research Funds for the Central Universities(3332013052)
文摘Objective To screen the proteins associated with four-and-a-half LIM domains 3(FHL3) 3' untranslated region(3'UTR) in glioma cells. Methods Western blot was adopted to detect the regulatory effect of poly(C)-binding protein 2(PCBP2) on FHL3. Biotin pull-down and sliver staining were employed to screen and verify the candidate binding proteins of FHL3 3'UTR. Then liquid chromatography-tandem mass spectrometry(LC-MS/MS) and molecule annotation system were used to identify and analyze the candidate binding proteins. Immunoprecipitation was conducted to study the interaction between PCBP2 and polypyrimidine tract-binding protein 1(PTBP1), a binding protein identified by LC-MS/MS. Results PCBP2 could bind to FHL3 mRNA 3'UTR-A and inhibited the expression of FHL3 in T98 G glioms cells. 22 candidate binding proteins were identified. Among them, there were 11 RNA binding proteins, including PCBP2. PTBP1 associated with FHL3 mRNA 3'UTR and interacted with PCBP2 protein. Conclusion PCBP2 and PTBP1 can both associate with FHL3 mRNA 3'UTR through forming a protein complex.
基金supported by the National Research and Development Program of China (2016YFA0500401)National Natural Science Foundation of China (31630035, 31571486, 81370203, 81461148026, 31271228 and 31327901)the Project of Beijing Municipal Science and Technology Commission (Z141100000214006)
文摘The elementary Ca^2+ release events, Ca2+ sparks, has been found for a quarter of century. However, the molecular regulation of the spark generator, the ryanodine receptor (RyR) on the sarcoplasmic reticulum, remains obscure. Although each subunit of the RyR homotetramer has a site for FKS06-binding protein (FKBP), the role of FKBPs in modifying RyR Ca^2+ sparks has been debated for long. One of the reasons behind the controversy is that most previous studies detect spontaneous sparks, where the mixture with out-of-focus events and local wavelets prevents an accurate characterization of Ca^2+ sparks. In the pre- sent study, we detected Ca^2+ sparks triggered by single L-type Ca^2+ channels (LCCs) under loose-seal patch clamp conditions in FKS06-treated or FKBPI2.6 knockout cardiomyocytes. We found that FKBP dissociation both by FKS06 and by rapamycin decreased the Ca^2+ spark amplitude in ventricular cardiomyocytes. This change was neither due to decreased releasable Ca^2+ in the sarcoplasmic reticulum, nor explained by changed RyR sensitivity. Actually FKS06 increased the LCC-RyR coupling probability and curtailed the latency for an LCC to trigger a RyR Ca^2+ spark. FKBP12.6 knockout had similar effects as FKS06/rapamycin treatment, indicating that the decreased spark amplitude was attributable to the dissociation of FKBP12.6 rather than FKBP12. We also explained how decreased amplitude of spontaneous sparks after FKBP dissociation sometimes appears to be increased or unchanged due to inappropriate data processing. Our results provided firm evidence that without the inter-RyR coordination by functional FKBP12.6, the RyR recruitment during a Ca^2+ spark would be compromised despite the sensitization of individual RyRs.
基金Project (Nos 30871021 and 30900716) supported by the National Natural Science Foundation of China
文摘Objective:To determine the effect of steroidogenic acute regulatory protein(StAR) overexpression on the levels of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1) and ATP-binding cassette transporter G1(ABCG1) in an endothelial cell line(bEnd.3).Methods:The StAR gene was induced in bEnd.3 cells with adenovirus infection.The infection efficiency was detected by fluorescence activated cell sorter(FACS) and fluorescence microscopy.The expressions of StAR gene and protein levels were detected by real-time polymerase chain reaction(PCR) and Western blot.The gene and protein levels of ABCA1 and ABCG1 were detected by real-time PCR and Western blot after StAR overexpression.Results:The result shows that StAR was successfully overexpressed in bEnd.3 cells by adenovirus infection.The mRNA and protein expressions of ABCA1 and ABCG1 were greatly increased by StAR overexpression in bEnd.3 cells.Conclusion:Overexpression of StAR increases ABCA1 and ABCG1 expressions in endothelial cells.
基金Supported by Research Fund of the Doctoral Program of Higher Education (200805720004)Scientific Research Foundation for Returned Scholars, Ministry of Education of China ([2009]1001)~~
文摘[Objective] To construct prokaryotic expression vectors encoding gene Erb3binding protein (EBP1), which plays important roles in regulating plant organ size from Nervilia fordii (Hance) Schltr. [Methods] PCR products of NfEBP1 with particular restriction sites and expression vectors, pET-28 and pET-16b were digested. Ligation, transformation and selection were performed to construct the recombinant plasmids pET-28-NfEBP1 and pET-16-NfEBP1. The recombinant plasmids were transformed into E. coli BL21 using heat -shock transformation. [Results] Recombinant plasmids pET-28-NfEBP1-1188 and pET-16-NfEBP1-1188 were constructed and transformed into expressional host cells, E. coli BL21, and validated by colony PCR, sequencing and double digestion. [Conclusion] Prokaryotic expression vectors of EBP1 gene from N. fordii were successfully constructed, which laid the foundation for characterization of the gene function.
基金supported by the National Natural Science Foundation of China(Grant No.30672426).
文摘DNA double-strand break(DSB)is generally regarded as the most lethal of all DNA lesions after radiation.Ku80,DNA-PK catalytic subunit(DNA-PKcs)and ataxia telangiectasia mutated(ATM)proteins are major DSB repair proteins.In this study,survival fraction at 2Gy(SF2)values of eight human tumor cell lines(including four human cervical carcinoma cell lines HeLa,SiHa,C33A,Caski,three human breast carcinoma cell lines MCF-7,MDA-MB-231,MDA-MB-453,and one human lung carcinoma cell line A549)were acquired by clone formation assay,and western blot was applied to detect the expressions of Ku80,DNA-PKcs and ATM protein.The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis.We found that the expression of the same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference.The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2(r=0.723,P=0.043),but Ku80 and ATM expression had no correlation with SF2(P>0.05).Thesefindings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.
基金Supported by the National Natural Science Foundation of China(Nos.20771030, 20671025).Acknowledgements We are thankful to HAN Weiwei and WANG Ye in the Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University for assistance in using the computational facilities.
文摘We used a new approach,protein folding shape code(PFSC),to predict the potential staurosporine binding sites in protein kinases.Firstly,all available three dimensioned(3D) structures of protein kinases in protein databank(PDB) were converted into one-dimensional PFSC description,based on which a PFSC-kinome library was constructed.Secondly,a set of protein kinase-staurosporine complexes were analyzed to define the common structural features of the binding sites.Thirdly,the structural features of the staurosporine binding sites were used to virtually screen the PFSC-kinome library to predict multiple protein receptors that have potential binding capacity for staurosporine.Collectively,the development of the similar method for predicting drug binding site demonstrates that virtual screening protein database can provide valuable information on drug discovery and understanding of pharmacological pathways.
基金Project supported by the National Natural Science Foundation of China (No. 30370335).
文摘Molecular modeling of interactions of four 7- or 8-substituted benzolactam-V8 (BLV) molecules with the cys2 activator-binding domain of protein kinase C (PKCδ) was carried out using molecular docking program Autodock. The docked models reveal that the hydroxymethyl group at the C(5) atom of the eight-membered ring of each BLV is bound at the bottom of the binding groove of the cys2 domain of PKCδ The BLV molecules make hydrogen bonds and hydrophobic interactions with PKCδ, which are similar to those in the crystal structure of the cys2 domain of PKCδ in complex with phorbol 13-acetate. BLV-1 does not contain a long side chain that is hydrophobic and necessary for membrane insertion, so that it would not be a potent modulator of PKCδ. The other three BLV molecules have long side chains substituted at C(7) or C(8) atoms, and it was predicted, based on the docking results, that they had the PKCδ-binding affinity in the order of BLV-2〉BLV-4〉BLV-3, and BLV-2 would be a potent activator of PKCδ.
文摘Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining(NHEJ)-mediated DSB repair pathway that rejoins DSB ends.New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination(HR)signaling.This review focuses on the up-and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair,which in turn promotes the sensitivity of poly(ADP-ribose)polymerase inhibitor(PARPi)in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.
基金the National Natural Science Foundation of China(Nos.81701568,81930041,81571524,81872248,and 91842103)the Zhejiang Provincial Natural Science Foundation of China(Nos.Y15C080001 and Z19H100001)the Zhejiang Provincial Key Laboratory for Immunity and Inflammatory Diseases for its support。
文摘Although microRNA-155(miR-155)is considered a pro-inflammatory mediator,cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells.In this study,we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide(LPS)stimulation;223 genes were down-regulated and 85 genes were up-regulated,including suppressor of cytokine signaling 1(SOCS1)and transforming growth factor-β-activated kinase 1-binding protein 2(TAB2),two well-known genes involved in miR-155-mediated regulation of the Toll-like receptor 4(TLR4)signaling pathway.We also found that miR-155 acted as an anti-inflammatory mediator in the initial stage of LPS-induced inflammatory response mainly through repressing TAB2 protein translation,and as a proinflammatory mediator by down-regulating SOCS1 in the later stage.Meanwhile,overexpression of TAB23'untranslated region(UTR)in macrophages promoted the development of endotoxin tolerance by competing for binding with miR-155,which resulted in an elevated expression level of SOCS1 protein.These findings provide new insights for understanding the regulatory mechanisms in fine-tuning of LPS-induced innate immune response.