Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradi...Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal.展开更多
To reduce the charge-coupled device(CCD)readout noise and improve the detection ability under low illumination and dim targets,a new low-noise CCD signal processing technology-CCD digital denoiseis gradually being emp...To reduce the charge-coupled device(CCD)readout noise and improve the detection ability under low illumination and dim targets,a new low-noise CCD signal processing technology-CCD digital denoiseis gradually being employed in aerospace detection and other fields.In this study,the main readout noise of CCD detectors and its characteristics are analyzed.A CCD digital denoise system and an experimental platform are designed as well as established by using a PCIe data acquisition card.According to the characteristics of readout noise,some digital filters are analyzed and designed based on distributed kernel coefficient,and the optimal kernel coefficients are obtained through iteration.Then,CCD signal and filter model are established,and the optimal filter is designed to apply to the digital denoise system.Finally,according to the image data obtained from the system,the performance of the digital denoise system and digital filtering algorithm is evaluated and compared.At 500 kHz and 1 MHz CCD readout rates,the denoising performance of the optimal filter designed in the experiment is 16%-32%higher than that of the digital filter with kernel distribution coefficient,and 50%-60%higher than that of the traditional correlated double sampling technology.展开更多
The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical co...The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical considerations pertinent to choosing the right CCD camera and unveiling the principles underlying multifarious parameters. Therefore, this analysis can be a valuable tool in scrutinizing each parameter and clarifying proper usage of a scientific CCD camera.展开更多
The time delay integration charge coupled device(TDI CCD)is the key component in remote sensing systems.The paper analyzes the structure and the working principles of the device according to a customized TDI CCD chip....The time delay integration charge coupled device(TDI CCD)is the key component in remote sensing systems.The paper analyzes the structure and the working principles of the device according to a customized TDI CCD chip.Employing the special clock resources and large-scale phase locked logic(PLL)in field-programmable gate arrays(FPGA),a timing-driven approach is proposed,using which all timing signals including reset gate,horizontal and vertical timing signals,are implemented in one chip.This not only reduces printed circuit board(PCB)space,but also enhances the portability of the system.By studying and calculating CCD parameters thoroughly,load capacity and power consumption,package,etc,are compared between various candidates chips,and detailed comparison results are also listed in table.Experimental results show that clock generator and driving circuit satisfy the requirements of high speed TDI CCD.展开更多
Quantum cryptography and especially quantum key distribution (QKD) is a technique that allocates secure keys only for a short distance. QKD protocols establish secure key by consent of both the sender and receiver. Ho...Quantum cryptography and especially quantum key distribution (QKD) is a technique that allocates secure keys only for a short distance. QKD protocols establish secure key by consent of both the sender and receiver. However, communication has to take place via an authenticate channel. Without this channel, QKD is vulnerable to man-in-the-middle attack. While not completely secure, it offers huge advantages over traditional methods by the use of entanglement swapping and quantum teleportation. In our research, we adopt the principle of charge-coupled device (CCD) to transfer the qubit from the sender to the receiver via a quantum channel. This technology has an added advantage over polarizer as only the circuit for transmitting the qubit is sufficient. No extra circuitry to implement the polarizer is required.展开更多
Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detect...Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.展开更多
Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional...Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume ele- ments and energy shares were also discussed.展开更多
The design of a large-aperture and wide-band optical lens for camera is presented. By utilizing the atmospheric window of infrared light, clear images can be achieved in the dark or poor visibility conditions. To use ...The design of a large-aperture and wide-band optical lens for camera is presented. By utilizing the atmospheric window of infrared light, clear images can be achieved in the dark or poor visibility conditions. To use near-infrared and visible light to obtain images, the charge coupled device(CCD) is adopted as the image sensor of the lens with the center wavelength of 880 nm, which operates at the wavelength range from 400 nm to 1 000 nm. After calculating the parameters of optical lens, Sunnah type is selected as the initial structure. Through the optimization of optical design software ZEMAX, the lens obtains an excellent imaging performance. The modulation transfer function(MTF) can be more than 0.3 at the spatial frequency of 110 lp/mm, and the maximum distortion can be less than 0.1%.展开更多
Aiming at the defects of routine settlement measurement methods, such as complicated procedures, time-consuming and labor-intensive, high cost and low measurement accuracy, based on the analysis of existing engineerin...Aiming at the defects of routine settlement measurement methods, such as complicated procedures, time-consuming and labor-intensive, high cost and low measurement accuracy, based on the analysis of existing engineering measurement technical requirements and specifications, a multi-point high precision and high efficiency based on laser reference is proposed. The automatic building settlement real-time monitoring system program gives the principle and system model of single-point settlement observation. The model of multi-point scanning settlement monitoring system and the model of multi-point network settlement monitoring system are designed, and their advantages and disadvantages are analyzed. We focus on the networked multi-point settlement monitoring system for network cumulative error analysis, and propose related evaluation and correction methods. The hardware schematic and software block diagram of the laser reference measurement and measurement system of the single point settlement acquisition system are given. Finally, the risk of subsidence state is quantitatively evaluated based on multi-point settlement monitoring data. The measurement error of this method is less than 300 μm, which can realize the monitoring and evaluation of the overall settlement.展开更多
This paper applies digital image techniques to observe the slagging characteristics of blended coals in a pilot-scale furnace. Collected deposit samples were analyzed by scanning electron microscopy linked with energy...This paper applies digital image techniques to observe the slagging characteristics of blended coals in a pilot-scale furnace. Collected deposit samples were analyzed by scanning electron microscopy linked with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and X-ray Fluorescence (XRF) to acquire the microstructure, chemical composition, and mineralogy. The deposit thickness of three blends was analyzed between their parent coal A (Datong) and coal B (Shan), and we noted that the time to reach a stable stage decreased with the ratio of coal B. The addition of coal A into coal B could remarkably restrained the growth and thickness of ash deposits. The results of XRD analysis indicated the initial layer was predominantly comprised of the crystalline minerals quartz, anorthite, or albite except for coal B. All of the blends and coals contained quartz and Ca- to Al-silicates (Ca0.68Na0.32)(All.68Si0.32)Si2O8 in the slag layer where iron-bearing minerals (e.g., ilvaite) were altered into an amorphous phase. The result of SEM-EDX suggested that there was an elemental disparity between the coal ash and deposit.展开更多
In this paper, a long-period waveguide grating was fabricated in x-cut lithium niobate substrate by patterned annealed proton exchange waveguide fabrication process. The waveguide mode characteristic was evaluated usi...In this paper, a long-period waveguide grating was fabricated in x-cut lithium niobate substrate by patterned annealed proton exchange waveguide fabrication process. The waveguide mode characteristic was evaluated using a charge-coupled device(CCD) camera. It shows that the waveguide is single mode transmission at a wavelength of1 550 nm. The transmission spectra of the long period waveguide gratings were measured by optical spectrum analyzer(OSA) and show an extinction ratio of ~17 dB and a 3 dB bandwidth of ~10 nm at the resonant wavelength. The resonant wavelength moves toward to the long wavelength direction as the waveguide width-difference increases in the same period, and also shifts toward to the long wavelength direction with the increase of the period in the case of the same waveguide width-difference. The method of fabricating a long period waveguide grating based on a patterned annealed proton exchange technique simplifies the fabrication process, and at the same time, reduces the fabrication cost.展开更多
基金Project supported by the Foundation of State Key Laboratory of China(Grant Nos.SKLIPR1903Z,1803)the National Natural Science Foundation of China(Grant Nos.U2167208 and 11875223).
文摘Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal.
基金the National Program on Key Basic Research Project(973 Program)(No.6132570201).
文摘To reduce the charge-coupled device(CCD)readout noise and improve the detection ability under low illumination and dim targets,a new low-noise CCD signal processing technology-CCD digital denoiseis gradually being employed in aerospace detection and other fields.In this study,the main readout noise of CCD detectors and its characteristics are analyzed.A CCD digital denoise system and an experimental platform are designed as well as established by using a PCIe data acquisition card.According to the characteristics of readout noise,some digital filters are analyzed and designed based on distributed kernel coefficient,and the optimal kernel coefficients are obtained through iteration.Then,CCD signal and filter model are established,and the optimal filter is designed to apply to the digital denoise system.Finally,according to the image data obtained from the system,the performance of the digital denoise system and digital filtering algorithm is evaluated and compared.At 500 kHz and 1 MHz CCD readout rates,the denoising performance of the optimal filter designed in the experiment is 16%-32%higher than that of the digital filter with kernel distribution coefficient,and 50%-60%higher than that of the traditional correlated double sampling technology.
基金supported by the the National Major Technologies R&D Programme of China during the 10th Five-Year Plan Period(No.2001BA302B)the National Science Foundation for Distinguished Young Scholars(No.10225526)+1 种基金the Knowledge Innovation Programme of the Chinese Academy of Sciences(No.KSCX2-SW-324)the Foundation for University Key Teacher by the Ministry of Education(No.2005jq1135).
文摘The proposed multi-dimensional quantitative fluorescence microscopy for the CASLIBB single-particle microbeam II endstation is a CCD-based imaging system. We systematically analyse the theoretical and the practical considerations pertinent to choosing the right CCD camera and unveiling the principles underlying multifarious parameters. Therefore, this analysis can be a valuable tool in scrutinizing each parameter and clarifying proper usage of a scientific CCD camera.
基金National High Technology Research and Development Program of China(863 Program)(No.2009AA7010102)
文摘The time delay integration charge coupled device(TDI CCD)is the key component in remote sensing systems.The paper analyzes the structure and the working principles of the device according to a customized TDI CCD chip.Employing the special clock resources and large-scale phase locked logic(PLL)in field-programmable gate arrays(FPGA),a timing-driven approach is proposed,using which all timing signals including reset gate,horizontal and vertical timing signals,are implemented in one chip.This not only reduces printed circuit board(PCB)space,but also enhances the portability of the system.By studying and calculating CCD parameters thoroughly,load capacity and power consumption,package,etc,are compared between various candidates chips,and detailed comparison results are also listed in table.Experimental results show that clock generator and driving circuit satisfy the requirements of high speed TDI CCD.
文摘Quantum cryptography and especially quantum key distribution (QKD) is a technique that allocates secure keys only for a short distance. QKD protocols establish secure key by consent of both the sender and receiver. However, communication has to take place via an authenticate channel. Without this channel, QKD is vulnerable to man-in-the-middle attack. While not completely secure, it offers huge advantages over traditional methods by the use of entanglement swapping and quantum teleportation. In our research, we adopt the principle of charge-coupled device (CCD) to transfer the qubit from the sender to the receiver via a quantum channel. This technology has an added advantage over polarizer as only the circuit for transmitting the qubit is sufficient. No extra circuitry to implement the polarizer is required.
基金This project is supported by Science and Technology Development Foundation of Shanghai Municipal Commission of Science and Technology, China (No.021111125).
文摘Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.
基金Project supported by National Natural Science Foundation of China(No. 60534030)Program for Changjiang Scholars and InnovativeResearch Team in University (No. IRT0434)
文摘Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume ele- ments and energy shares were also discussed.
基金Key Scientific and Technological Research Projects of Zhejiang Province(2008C13078)
文摘The design of a large-aperture and wide-band optical lens for camera is presented. By utilizing the atmospheric window of infrared light, clear images can be achieved in the dark or poor visibility conditions. To use near-infrared and visible light to obtain images, the charge coupled device(CCD) is adopted as the image sensor of the lens with the center wavelength of 880 nm, which operates at the wavelength range from 400 nm to 1 000 nm. After calculating the parameters of optical lens, Sunnah type is selected as the initial structure. Through the optimization of optical design software ZEMAX, the lens obtains an excellent imaging performance. The modulation transfer function(MTF) can be more than 0.3 at the spatial frequency of 110 lp/mm, and the maximum distortion can be less than 0.1%.
基金Supported by the Natural Science Foundation of Shaanxi Province(2018JM6023)the Science and Technology Project of Shaanxi Provincial Transportation Department(17-16K,17-33T)
文摘Aiming at the defects of routine settlement measurement methods, such as complicated procedures, time-consuming and labor-intensive, high cost and low measurement accuracy, based on the analysis of existing engineering measurement technical requirements and specifications, a multi-point high precision and high efficiency based on laser reference is proposed. The automatic building settlement real-time monitoring system program gives the principle and system model of single-point settlement observation. The model of multi-point scanning settlement monitoring system and the model of multi-point network settlement monitoring system are designed, and their advantages and disadvantages are analyzed. We focus on the networked multi-point settlement monitoring system for network cumulative error analysis, and propose related evaluation and correction methods. The hardware schematic and software block diagram of the laser reference measurement and measurement system of the single point settlement acquisition system are given. Finally, the risk of subsidence state is quantitatively evaluated based on multi-point settlement monitoring data. The measurement error of this method is less than 300 μm, which can realize the monitoring and evaluation of the overall settlement.
基金the National Natural Science Foundation of China
文摘This paper applies digital image techniques to observe the slagging characteristics of blended coals in a pilot-scale furnace. Collected deposit samples were analyzed by scanning electron microscopy linked with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and X-ray Fluorescence (XRF) to acquire the microstructure, chemical composition, and mineralogy. The deposit thickness of three blends was analyzed between their parent coal A (Datong) and coal B (Shan), and we noted that the time to reach a stable stage decreased with the ratio of coal B. The addition of coal A into coal B could remarkably restrained the growth and thickness of ash deposits. The results of XRD analysis indicated the initial layer was predominantly comprised of the crystalline minerals quartz, anorthite, or albite except for coal B. All of the blends and coals contained quartz and Ca- to Al-silicates (Ca0.68Na0.32)(All.68Si0.32)Si2O8 in the slag layer where iron-bearing minerals (e.g., ilvaite) were altered into an amorphous phase. The result of SEM-EDX suggested that there was an elemental disparity between the coal ash and deposit.
基金supported by the National Natural Science Foundation of China(No.61377075)the New Century Excellent Talents in University(No.NCET-07-0611)the Training Program for Leading Talents of Universities in Tianjin
文摘In this paper, a long-period waveguide grating was fabricated in x-cut lithium niobate substrate by patterned annealed proton exchange waveguide fabrication process. The waveguide mode characteristic was evaluated using a charge-coupled device(CCD) camera. It shows that the waveguide is single mode transmission at a wavelength of1 550 nm. The transmission spectra of the long period waveguide gratings were measured by optical spectrum analyzer(OSA) and show an extinction ratio of ~17 dB and a 3 dB bandwidth of ~10 nm at the resonant wavelength. The resonant wavelength moves toward to the long wavelength direction as the waveguide width-difference increases in the same period, and also shifts toward to the long wavelength direction with the increase of the period in the case of the same waveguide width-difference. The method of fabricating a long period waveguide grating based on a patterned annealed proton exchange technique simplifies the fabrication process, and at the same time, reduces the fabrication cost.