Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding part...Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC)heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD)in the flow of a non-Newtonian nanofluid(the Jeffrey fluid)towards a stretched surface.The magnetohydrodynamic(MHD)fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier’s and Fick’s laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases.展开更多
Oryza sativa and O. alta belong to AA and CCDD genomes in Oryza, respectively. Interspecific repro-ductive isolation limits the transfer of favorable genes from O. alta into O. sativa. The cytological mechanisms of in...Oryza sativa and O. alta belong to AA and CCDD genomes in Oryza, respectively. Interspecific repro-ductive isolation limits the transfer of favorable genes from O. alta into O. sativa. The cytological mechanisms of interspecific incrossability and hybrid sterility between O. sativa and O. alta were studied systematically in this paper. We indentified two cytological causes of interspecific incrossabil-ity. First, we observed embryo sac incompatibility that caused fertilization barriers of variable severity such as non-fertilization, fertilization stagnation and egg cell single-fertilization. Second, we observed hybrid inviability, the major cause for incrossability, apparent from hybrid embryo developmental stagnation and embryo abortion. Hybrid sterility included both embryo sac sterility and pollen sterility. The hybrid embryo sac was completely sterile and exhibited mainly embryo sac degeneration. Hybrid pollen was also sterile and mainly typical abortive. Hybrid sterility was mainly caused by severely ab-normal meioses of megasporocytes and pollen mother cells; it is the most important abnormality, being chromosome sterility. Several methods are suggested to overcome the interspecific reproductive iso-lation between O. sativa and O. alta.展开更多
文摘一般的栽培稻 Oryza sativa 是属于 AA 基因组,并且有敌稗分解酶(酰胺水解酶),因此能解毒敌稗,显示出很强的抗性。另外在西非州部分地区栽培的 Oryzaglaberrima(A^gA^g)或属于野生稻的 O.sativaf spontanea(AA)、O.breviligulata(A^gA^g)、O.punctata(BB、BBCC)、O.minuta(BBCC)、O.officinalis(CC)、O.eichingeri(CC)、O.latifolia(CCDD)、O.alta(CCDD)、O.grandiglumis(CCDD)等也具有敌稗分解酶,对敌稗具有抗性。但是具有 EE 基因组的 O.
文摘Thermal conduction which happens in all phases(liquid,solid,and gas)is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC)heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD)in the flow of a non-Newtonian nanofluid(the Jeffrey fluid)towards a stretched surface.The magnetohydrodynamic(MHD)fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier’s and Fick’s laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases.
基金Supported by the Guangdong provincial key project of Natural Science Foun-dation (Grant No. 021037)Gaozhou wild rice initiative project from Agri-culture Department of Guangdong Province (Grant No. 360 (2003))
文摘Oryza sativa and O. alta belong to AA and CCDD genomes in Oryza, respectively. Interspecific repro-ductive isolation limits the transfer of favorable genes from O. alta into O. sativa. The cytological mechanisms of interspecific incrossability and hybrid sterility between O. sativa and O. alta were studied systematically in this paper. We indentified two cytological causes of interspecific incrossabil-ity. First, we observed embryo sac incompatibility that caused fertilization barriers of variable severity such as non-fertilization, fertilization stagnation and egg cell single-fertilization. Second, we observed hybrid inviability, the major cause for incrossability, apparent from hybrid embryo developmental stagnation and embryo abortion. Hybrid sterility included both embryo sac sterility and pollen sterility. The hybrid embryo sac was completely sterile and exhibited mainly embryo sac degeneration. Hybrid pollen was also sterile and mainly typical abortive. Hybrid sterility was mainly caused by severely ab-normal meioses of megasporocytes and pollen mother cells; it is the most important abnormality, being chromosome sterility. Several methods are suggested to overcome the interspecific reproductive iso-lation between O. sativa and O. alta.