This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution o...This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution of the content of soil carbon and nitrogen, the connection between the biomass and the content of carbon and nitrogen. The studies show that underground biomass in the herb layer of upland meadow is more than that in the terrace meadow, while underground biomass in the upland shrubland is the most. The vertical distribution of underground biomass of each type is obvious as in shape of"T". As to the distribution of the content of soil organic carbon in the three sample grounds, it showed that the deeper the soil the less the content of soil organic carbon. In May, unlike at terrace meadow, the underground biomass and the content of soil organic carbon in positive proportion, such revelation at upland meadow and upland shrubland is not apparent. In July, at upland meadow and terrace meadow the underground biomass and the content of soil total nitrogen in positive proportion, such revelation at upland shrubland is not apparent either.展开更多
The morpho-anatomical structure of the aboveground and underground organs of the rare endemic species </span><i><span style="font-family:Verdana;">Iris </span></i><span style...The morpho-anatomical structure of the aboveground and underground organs of the rare endemic species </span><i><span style="font-family:Verdana;">Iris </span></i><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">Juno</span></i><span style="font-family:Verdana;">)</span><i> <span style="font-family:Verdana;">magnifica</span></i><span style="font-family:Verdana;">, growing under natural conditions of the Zeravshan ridge, Samarkand mountains, has been studied for the first time. A comparative analysis of the morpho-anatomical structure of the aboveground and underground organs revealed characteristic diagnostic signs of a microscopic structure. The complex of anatomical features of the aboveground and underground organs of the studied species are species-specific and can be used to solve taxonomic problems of this genus of plants, as well as the Red Book endemic species of </span><span style="font-family:Verdana;">juno</span><span style="font-family:Verdana;"> irises, are of particular interest in connection with the potential for their vegetative reproduction.展开更多
In-situ conversion processing (ICP) of shale oil underground at the depth ranging from 300 m to 3 000 m is a physical and chemical process caused by using horizontal drilling and electric heating technology, which con...In-situ conversion processing (ICP) of shale oil underground at the depth ranging from 300 m to 3 000 m is a physical and chemical process caused by using horizontal drilling and electric heating technology, which converts heavy oil, bitumen and various organic matter into light oil and gas in a large scale, which can be called"underground refinery". ICP has several advantages as in CO2capture, recoverable resource potential and the quality of hydrocarbon output. Based on the geothermal evolution mechanism of organic materials established by Tissot et al., this study reveals that in the nonmarine organic-rich shale sequence, the amount of liquid hydrocarbon maintaining in the shale is as high as 25%in the liquid hydrocarbon window stage (R o less than 1.0%), and the unconverted organic materials (low mature-immature organic materials) in the shale interval can reach 40%to 100%. The conditions of organic-rich shale suitable for underground in-situ conversion of shale oil should be satisfied in the following aspects, TOC higher than 6%, R o ranging between 0.5%and 1%, concentrated thickness of organic-rich shale greater than 15 meters, burial depth less than 3 000 m, covering area bigger than 50 km2, good sealing condition in both up-and down-contacting sequences and water content smaller than 5%, etc. The shale oil resource in China’s onshore region is huge. It is estimated with this paper that the technical recoverable resource reaches 70-90 billion tons of oil and 60-65 trillion cubic meters of gas. The ICP of shale oil underground is believed to be a fairway to find big oil in the source kitchen in the near future. And it is also believed to be a milestone to keep China long-term stability of oil and gas sufficient supply by putting ICP of shale oil underground into real practice in the future.展开更多
基金the key Item of Sichuan Education Depart-ment (2006A070)
文摘This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution of the content of soil carbon and nitrogen, the connection between the biomass and the content of carbon and nitrogen. The studies show that underground biomass in the herb layer of upland meadow is more than that in the terrace meadow, while underground biomass in the upland shrubland is the most. The vertical distribution of underground biomass of each type is obvious as in shape of"T". As to the distribution of the content of soil organic carbon in the three sample grounds, it showed that the deeper the soil the less the content of soil organic carbon. In May, unlike at terrace meadow, the underground biomass and the content of soil organic carbon in positive proportion, such revelation at upland meadow and upland shrubland is not apparent. In July, at upland meadow and terrace meadow the underground biomass and the content of soil total nitrogen in positive proportion, such revelation at upland shrubland is not apparent either.
文摘The morpho-anatomical structure of the aboveground and underground organs of the rare endemic species </span><i><span style="font-family:Verdana;">Iris </span></i><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">Juno</span></i><span style="font-family:Verdana;">)</span><i> <span style="font-family:Verdana;">magnifica</span></i><span style="font-family:Verdana;">, growing under natural conditions of the Zeravshan ridge, Samarkand mountains, has been studied for the first time. A comparative analysis of the morpho-anatomical structure of the aboveground and underground organs revealed characteristic diagnostic signs of a microscopic structure. The complex of anatomical features of the aboveground and underground organs of the studied species are species-specific and can be used to solve taxonomic problems of this genus of plants, as well as the Red Book endemic species of </span><span style="font-family:Verdana;">juno</span><span style="font-family:Verdana;"> irises, are of particular interest in connection with the potential for their vegetative reproduction.
基金Supported by the International Cooperation Project of China National Petroleum Corporation(2015D-4810-02)China National Science and Technology Major Project(2016ZX05046)
文摘In-situ conversion processing (ICP) of shale oil underground at the depth ranging from 300 m to 3 000 m is a physical and chemical process caused by using horizontal drilling and electric heating technology, which converts heavy oil, bitumen and various organic matter into light oil and gas in a large scale, which can be called"underground refinery". ICP has several advantages as in CO2capture, recoverable resource potential and the quality of hydrocarbon output. Based on the geothermal evolution mechanism of organic materials established by Tissot et al., this study reveals that in the nonmarine organic-rich shale sequence, the amount of liquid hydrocarbon maintaining in the shale is as high as 25%in the liquid hydrocarbon window stage (R o less than 1.0%), and the unconverted organic materials (low mature-immature organic materials) in the shale interval can reach 40%to 100%. The conditions of organic-rich shale suitable for underground in-situ conversion of shale oil should be satisfied in the following aspects, TOC higher than 6%, R o ranging between 0.5%and 1%, concentrated thickness of organic-rich shale greater than 15 meters, burial depth less than 3 000 m, covering area bigger than 50 km2, good sealing condition in both up-and down-contacting sequences and water content smaller than 5%, etc. The shale oil resource in China’s onshore region is huge. It is estimated with this paper that the technical recoverable resource reaches 70-90 billion tons of oil and 60-65 trillion cubic meters of gas. The ICP of shale oil underground is believed to be a fairway to find big oil in the source kitchen in the near future. And it is also believed to be a milestone to keep China long-term stability of oil and gas sufficient supply by putting ICP of shale oil underground into real practice in the future.