The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to ...The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.展开更多
Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of c...Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research.展开更多
Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely ...Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem.展开更多
The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia conc...The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia concrete road(Road-L)and dolomite concrete road(Road-D),were prepared with light-burnt magnesia and a mixture of light-burnt magnesia and caustic dolomite(1:3 by mass),respectively.Variations in the properties of the MOCC pavement,such as compressive and flexural strength,mineralogical phase,and microstructure,after being exposed to two rainy seasons in the field were monitored.The compressive strength of the cored samples were conducted after being aged for 28 d,and the compressive and flexural strength were tested at ages of 1,2,3,28,90,180,270,360 and 720 d.The mineralogical phase and microstructure of the pavement were also analyzed by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results demonstrate that MOCC pavement obtained desirable compressive and flexural strengths after curing for 3 d for Road-L and 28 d for Road-D.Both of the compressive and flexural strength of Road-L and Road-D decreased slightly after experiencing two rainy seasons,with the major hydration products being 5Mg(OH)2 MgCl28H2O(Phase 5)and 3Mg(OH)2 MgCl28H2O(Phase 3).The decomposition of Phase 5 is mainly responsible for reducing the mechanical strength of the MOCC pavement.展开更多
The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of t...The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.展开更多
文摘The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.
基金This research is financially supported by the Research Program of China Railway Siyuan Survey and Design Group Co.,Ltd.(Grant number 2021K066).
文摘Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research.
基金supported by the National Natural Science Foundation of China(Grant No.51908263,11932008,DL2021175003L and G2021175026L)Provincial Projects(2020-0624-RCC-0013 and JK2021-18)。
文摘Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem.
基金Project(2014–GX-A2A)supported by Major Science and Technology Projects of Qinghai Province,ChinaProjects(2018-NN-152,2019-GX-165)supported by Science and Technology Achievements Transformation Project of Qinghai Province,ChinaProjects(2018467,2019423)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences project supported by the High-end innovative talents Thousand talents Plan of Qinghai Province,China
文摘The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia concrete road(Road-L)and dolomite concrete road(Road-D),were prepared with light-burnt magnesia and a mixture of light-burnt magnesia and caustic dolomite(1:3 by mass),respectively.Variations in the properties of the MOCC pavement,such as compressive and flexural strength,mineralogical phase,and microstructure,after being exposed to two rainy seasons in the field were monitored.The compressive strength of the cored samples were conducted after being aged for 28 d,and the compressive and flexural strength were tested at ages of 1,2,3,28,90,180,270,360 and 720 d.The mineralogical phase and microstructure of the pavement were also analyzed by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results demonstrate that MOCC pavement obtained desirable compressive and flexural strengths after curing for 3 d for Road-L and 28 d for Road-D.Both of the compressive and flexural strength of Road-L and Road-D decreased slightly after experiencing two rainy seasons,with the major hydration products being 5Mg(OH)2 MgCl28H2O(Phase 5)and 3Mg(OH)2 MgCl28H2O(Phase 3).The decomposition of Phase 5 is mainly responsible for reducing the mechanical strength of the MOCC pavement.
基金financially supported by the Fundamental Research Funds for the Central Universities(DUT20JC50,DUT17RC(3)006)the National Natural Science Foundation of China(51508137)the Research Center of Civil Aviation Airport Safety and Operation Engineering Technology(KFKT2021-01)。
文摘The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.