This paper evaluated pulping performance of 3-year-old field-grown transgenic poplar (Populus tremula × Populus alba). The transgenic poplar with anti-sense CCoAOMT had an about 13% decreased lignin content, in w...This paper evaluated pulping performance of 3-year-old field-grown transgenic poplar (Populus tremula × Populus alba). The transgenic poplar with anti-sense CCoAOMT had an about 13% decreased lignin content, in which a slight increment was found in S/G ratio. Chemical analysis showed that the transgenic poplar had significantly less benezene-ethanol extractive than that of control wood, but no significant differences were found in contents of ash, cold water extractive, hot water extractive, 1% NaOH extractive, holocellulose, pentosans and cellulose. Fiber assay demonstrated that down-regulation of CCoAOMT expression improved the fiber quality in transgenic poplar. Kraft pulping showed that lower lignin in transgenic poplar led to remarkable improved pulp quality and increased pulp yield.展开更多
基金the National Natural Science Foundation of China (Grant No. 30671699)948 Project of State Forestry Administration of China (Grant No. 2008-4-26)+1 种基金Natural Sciences Foundation of Beijing (Grant No. 5072013)Bejing Transgenic Crop Special Project of Beijing Municipal Science and Technology Commission (Grant No. Z07070501770701)
文摘This paper evaluated pulping performance of 3-year-old field-grown transgenic poplar (Populus tremula × Populus alba). The transgenic poplar with anti-sense CCoAOMT had an about 13% decreased lignin content, in which a slight increment was found in S/G ratio. Chemical analysis showed that the transgenic poplar had significantly less benezene-ethanol extractive than that of control wood, but no significant differences were found in contents of ash, cold water extractive, hot water extractive, 1% NaOH extractive, holocellulose, pentosans and cellulose. Fiber assay demonstrated that down-regulation of CCoAOMT expression improved the fiber quality in transgenic poplar. Kraft pulping showed that lower lignin in transgenic poplar led to remarkable improved pulp quality and increased pulp yield.