The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood.We report a cell lineage and atlas of developing mouse teeth.We performed a large-scale(92,688 cells)single cell RNA se...The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood.We report a cell lineage and atlas of developing mouse teeth.We performed a large-scale(92,688 cells)single cell RNA sequencing,tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5.Combined with an assay for transposase-accessible chromatin with high-throughput sequencing,our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types.Subsequently,we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells.CD24^(+)and Plac8^(+)cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla,respectively,which could individually induce nonodontogenic epithelia to form tooth-like structures.Specifically,the Plac8^(+)tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date.Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.展开更多
The T-cell-mediated immune response is implicated in many clinical hepatic injuries, such as autoimmune hepatitis and acute virus hepatitis. CD24 is widely expressed by different immune cells and plays an important ro...The T-cell-mediated immune response is implicated in many clinical hepatic injuries, such as autoimmune hepatitis and acute virus hepatitis. CD24 is widely expressed by different immune cells and plays an important role in the pathogenesis of many autoimmune diseases. However, the role of CD24 in T-cell-mediated liver injury has not been elucidated until now. Here we showed that CD24 deficiency protects mice from concanavalin A (ConA)-induced fulminant liver injury by reducing serum interferon-γ (IFN-γ) levels. CD24 expression by hepatic T cells was markedly increased following ConA challenge. Moreover, decreased IFN-γ production by hepatic CD4^(+) T cells in CD24-deficient mice was detected, which was correlated with downregulated phosphorylation of STAT1 in hepatic tissue. In vitro experiments also supported the conclusion that CD24 deficiency impaired IFN-γ production by CD4^(+) T cells following ConA, CD3/CD28 and phorbol myristate acetate/ionomycin stimulation. Our study suggests that CD24 deficiency confers hepatoprotection by decreasing CD4^(+) T-cell-dependent IFN-γ production in vivo, which suggests that CD24 might be a potential target molecule for reducing clinical hepatitis.展开更多
基金supported by the National Key Research and Development Program of China Stem Cell and Translational Research,China(2017YFA0104800)the Research Funds from Health@InnoHK Program launched by Innovation Technology Commission of the Hong Kong SAR,China+4 种基金National Natural Science Foundation of China(81570944 and 92068201)Science and Technology Planning Project of Guangdong Province,China(2020B1212060052)High-level Hospital Construction Project(DFJHBF202110)Youth Innovation Promotion of the Chinese Academy of Sciences(2019348)Guangzhou Key Medical Disciplines(2021–2023)。
文摘The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood.We report a cell lineage and atlas of developing mouse teeth.We performed a large-scale(92,688 cells)single cell RNA sequencing,tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5.Combined with an assay for transposase-accessible chromatin with high-throughput sequencing,our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types.Subsequently,we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells.CD24^(+)and Plac8^(+)cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla,respectively,which could individually induce nonodontogenic epithelia to form tooth-like structures.Specifically,the Plac8^(+)tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date.Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.
基金This work was supported by grants from the Army Technology Research Program of China(BWS12J051)the National Natural Science Foundation of China(31570873)+1 种基金the Shanghai Committee of Science and Technology(2015QA1404700)We thank Professor Guanhong Song and Prof.Xuetao Cao for their critical review of the manuscript.
文摘The T-cell-mediated immune response is implicated in many clinical hepatic injuries, such as autoimmune hepatitis and acute virus hepatitis. CD24 is widely expressed by different immune cells and plays an important role in the pathogenesis of many autoimmune diseases. However, the role of CD24 in T-cell-mediated liver injury has not been elucidated until now. Here we showed that CD24 deficiency protects mice from concanavalin A (ConA)-induced fulminant liver injury by reducing serum interferon-γ (IFN-γ) levels. CD24 expression by hepatic T cells was markedly increased following ConA challenge. Moreover, decreased IFN-γ production by hepatic CD4^(+) T cells in CD24-deficient mice was detected, which was correlated with downregulated phosphorylation of STAT1 in hepatic tissue. In vitro experiments also supported the conclusion that CD24 deficiency impaired IFN-γ production by CD4^(+) T cells following ConA, CD3/CD28 and phorbol myristate acetate/ionomycin stimulation. Our study suggests that CD24 deficiency confers hepatoprotection by decreasing CD4^(+) T-cell-dependent IFN-γ production in vivo, which suggests that CD24 might be a potential target molecule for reducing clinical hepatitis.