Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8<sup>+</sup> T cell response. This process involves enhancement of...Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8<sup>+</sup> T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8<sup>+</sup> T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.展开更多
The field of tumor immunology has produced in the recent years a revolution in cancer therapeutics putting an end in the long lasting frustration of investigators in the area stemming from largely unsuccessful strides...The field of tumor immunology has produced in the recent years a revolution in cancer therapeutics putting an end in the long lasting frustration of investigators in the area stemming from largely unsuccessful strides to develop cancer vaccines. This progress has come from the introduction of immune checkpoint inhibitors, monoclonal antibodies blocking ligand/receptor pairs with inhibitory effects for immune cells. Through this blockade immune checkpoint blockers are able to ac-tivate the immune system and create an anti-tumoral effect. A significant sub-set of patients with various types of cancers such as melanoma, lung carcinomas and urothelial cancers benefit from treatment with these drugs and survivals have improved in some ca-ses. However other cancers are primarily resistant to immune blockers and secondary resistance is also the norm. Radiation therapy is often used in the palliative treatment of patients with advanced cancers and, in addition to the local effect in the irradiated field, it may in rare cases produce a systemic antitumor effect, termed "abscopal". This effect has been suggested to be produced by immune mechanisms. Thus an opportunity presents for a synergistic effect of immune stimulation between radiation and immune blockade inhibitors. The therapeutic opportunities presented with the combination of radiation and these drugs for gastrointestinal cancers will be discussed in this editorial overview.展开更多
The relations between the Human Immunodeficiency Virus-1 (HIV-1) and the human immune system are astonishingly multifaceted, where the critical role for cytotoxic T lymphocytes (CTLs) in the suppression of viral r...The relations between the Human Immunodeficiency Virus-1 (HIV-1) and the human immune system are astonishingly multifaceted, where the critical role for cytotoxic T lymphocytes (CTLs) in the suppression of viral replication in HIV-1 infected individuals cannot be ignored. In this research paper, we have proposed a mathematical model incorporating half saturation constant through the CTL mediated killing process and also in that sense, it has been infiltrated in the generation process of CTL through infected cells. To make the model more realistic, a time lag is introduced in the generation term of CTL population. Also an optimal control theory paradigm is used in our mathematical model to suppress the viral production. From our entire analysis, we have found threshold condition of half saturation constant and treatment schedule so that we can handle the situation of Acquired Immunodeficiency Syndrome (AIDS) patients in a better way. Our analysis reveals that, if the half saturation constant is around 47 mm^-3 in the saturation process and the drug therapy is to be used around 76 days, then we can get adequate results for better treatment of a HIV-1 patient. Based on numerical results, we observed that in a highly unstable situation, administration of chemotherapy at a high dose can stabilize the system.展开更多
基金Supported by "Instituto de Salud Carlos Ⅲ",Spain& "European Regional Development Fund(ERDF)a way of making Europe",No.PI12/00130 and No.PI15/00074and"Gilead Spain&Instituto de Salud Carlos Ⅲ",No.GLD14_00217
文摘Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8<sup>+</sup> T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8<sup>+</sup> T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.
文摘The field of tumor immunology has produced in the recent years a revolution in cancer therapeutics putting an end in the long lasting frustration of investigators in the area stemming from largely unsuccessful strides to develop cancer vaccines. This progress has come from the introduction of immune checkpoint inhibitors, monoclonal antibodies blocking ligand/receptor pairs with inhibitory effects for immune cells. Through this blockade immune checkpoint blockers are able to ac-tivate the immune system and create an anti-tumoral effect. A significant sub-set of patients with various types of cancers such as melanoma, lung carcinomas and urothelial cancers benefit from treatment with these drugs and survivals have improved in some ca-ses. However other cancers are primarily resistant to immune blockers and secondary resistance is also the norm. Radiation therapy is often used in the palliative treatment of patients with advanced cancers and, in addition to the local effect in the irradiated field, it may in rare cases produce a systemic antitumor effect, termed "abscopal". This effect has been suggested to be produced by immune mechanisms. Thus an opportunity presents for a synergistic effect of immune stimulation between radiation and immune blockade inhibitors. The therapeutic opportunities presented with the combination of radiation and these drugs for gastrointestinal cancers will be discussed in this editorial overview.
文摘The relations between the Human Immunodeficiency Virus-1 (HIV-1) and the human immune system are astonishingly multifaceted, where the critical role for cytotoxic T lymphocytes (CTLs) in the suppression of viral replication in HIV-1 infected individuals cannot be ignored. In this research paper, we have proposed a mathematical model incorporating half saturation constant through the CTL mediated killing process and also in that sense, it has been infiltrated in the generation process of CTL through infected cells. To make the model more realistic, a time lag is introduced in the generation term of CTL population. Also an optimal control theory paradigm is used in our mathematical model to suppress the viral production. From our entire analysis, we have found threshold condition of half saturation constant and treatment schedule so that we can handle the situation of Acquired Immunodeficiency Syndrome (AIDS) patients in a better way. Our analysis reveals that, if the half saturation constant is around 47 mm^-3 in the saturation process and the drug therapy is to be used around 76 days, then we can get adequate results for better treatment of a HIV-1 patient. Based on numerical results, we observed that in a highly unstable situation, administration of chemotherapy at a high dose can stabilize the system.