BACKGROUND To date,no specific treatment has been established to reverse progressive chronic kidney disease(CKD).AIM To evaluate the safety and efficacy of autologous CD34^(+)cell transplantation in CKD patients who e...BACKGROUND To date,no specific treatment has been established to reverse progressive chronic kidney disease(CKD).AIM To evaluate the safety and efficacy of autologous CD34^(+)cell transplantation in CKD patients who exhibited a progressive decline in renal function.METHODS The estimated glomerular filtration rate(eGFR)at the beginning of the study was 15.0-28.0 mL/minute/1.73 m^(2).After five days of treatment with the granulocyte colony-stimulating factor,mononuclear cells were harvested and CD34^(+)cells were magnetically collected.CD34^(+)cells were directly injected into the bilateral renal arteries twice(at 0 and 3 months),and their safety and efficacy were evaluated for 6 months.RESULTS Four patients were enrolled and completed the study.Three of four patients showed improvement in eGFR slope(eGFR slope>0 mL/minute/1.73 m^(2)),with the monthly slope of eGFR(delta eGFR)changing from-1.36±1.1(pretreatment)to^(+)0.22±0.71(at 6 months)mL/minute/1.73 m^(2)/month(P=0.135)after cell therapy.Additionally,intrarenal resistive index(P=0.004)and shear wave velocity(P=0.04)were significantly improved after cell therapy.One patient experienced transient fever after cell therapy,and experienced bone pain during granulocyte colony-stimulating factor administration.However,no severe adverse events were reported.CONCLUSION In conclusion,our findings suggest that repetitive peripheral blood-derived autologous CD34^(+)cell transplantation into the renal arteries is safe,feasible,and may be effective for patients with progressive CKD.However,a large-scale clinical trial is warranted to validate the efficacy of repetitive regenerative cell therapy using autologous CD34^(+)cells in patients with progressive CKD.展开更多
Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-t...Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.展开更多
CD34+ cells from human umbilical cord blood were purified by Dynal beads M-450 CD34 immunoselection system and cultured in the presence of various cytokines alone or in combination, including stem cell factor (SCF), i...CD34+ cells from human umbilical cord blood were purified by Dynal beads M-450 CD34 immunoselection system and cultured in the presence of various cytokines alone or in combination, including stem cell factor (SCF), interleukin-6 (IL-6) and erythropoietin (EPO). The results revealed that: (D In methylcellulose culture, the plating efficiencies of purified cord blood CD34+ cells were much different when stimulated by various cytokines. IL-6 alone had the lowest colo-ny yield, while the combination of SCF, IL-6 and EPO had the highest yield. ② In the suspension culture, IL-6 alone or IL-6 + EPO had little expanding effect on cord blood CD34+ celis, the other cytokine combinations could expand cord blood CD34+ celis at different Ievels. Among them, the combination of SCF, IL-6 and EPO had the maximal expanding effect on cord blood CD34+ celis, the number of progenitor celis peaked at day 21, about 29-fold increase and nucleated celis increased approximately 3676-fold at day 28. The expanding effect of展开更多
Objective: The human cluster of differentiation(CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer(...Objective: The human cluster of differentiation(CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer(NK) cells targeting hematologic malignancies(HMs).Methods: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine(PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients.Results: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS–CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an “exhausted” phenotype of intratumoral NK cells in patients with HMs or solid tumors.Conclusions: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.展开更多
AIM: To study the effect of mobilized peripheral blood autologous CD34 positive(CD34+) cell infusion in patients with non-viral decompensated cirrhosis.METHODS: Cirrhotic patients of non-viral etiology were divided in...AIM: To study the effect of mobilized peripheral blood autologous CD34 positive(CD34+) cell infusion in patients with non-viral decompensated cirrhosis.METHODS: Cirrhotic patients of non-viral etiology were divided into 2 groups based on their willingness to be listed for deceased donor liver transplant(DDLT)(control, n = 23) or to receive autologous CD34+ cell infusion through the hepatic artery(study group, n= 22). Patients in the study group were admitted to hospital and received granulocyte colony stimulating factor injections 520 μg/d for 3 consecutive days to mobilize CD34+ cells from the bone marrow. On day 4,leukapheresis was done and CD34+ cells were isolated using CliniMAC magnetic cell sorter. The isolated CD34+ cells were infused into the hepatic artery under radiological guidance. The patients were discharged within 48 h. The control group received standard of care treatment for liver cirrhosis and were worked up for DDLT as per protocol of the institute. Both groups were followed up every week for 4 wk and then every month for 3 mo.RESULTS: In the control and the study group, the cause of cirrhosis was cryptogenic in 18(78.2%) and16(72.72%) and alcohol related in 5(21.7%) and6(27.27%), respectively. The mean day 3 cell count(cells/μL) was 27.00 ± 20.43 with a viability of 81.84± 11.99%. and purity of 80%-90%. Primary end point analysis revealed that at 4 wk, the mean serum albumin in the study group increased significantly(2.83± 0.36 vs 2.43 ± 0.42, P = 0.001) when compared with controls. This improvement in albumin was,however, not sustained at 3 mo. However, at the end of3 mo there was a statistically significant improvement in serum creatinine in the study group(0.96 ± 0.33 vs 1.42 ± 0.70, P = 0.01) which translated into a significant improvement in the Model for End-Stage Liver Disease score(15.75 ± 5.13 vs 19.94 ± 6.68,P = 0.04). On statistical analysis of secondary end points, the transplant free survival at the end of 1 mo and 3 mo did not show any significant difference(P =0.60) when compared to the control group. There was no improvement in aspartate transaminase, alanine transaminase, and bilirubin at any point in the study population. There was no mortality benefit in the study group. The procedure was safe with no procedural or treatment related complications.CONCLUSION: Autologous CD 34+ cell infusion is safe and effectively improves liver function in the short term and may serve as a bridge to liver transplantation.展开更多
AIM:To assess the utility of an autologous CD34 + and CD133 + stem cells infusion as a possible therapeutic modality in patients with end-stage liver diseases.METHODS:One hundred and forty patients with endstage liver...AIM:To assess the utility of an autologous CD34 + and CD133 + stem cells infusion as a possible therapeutic modality in patients with end-stage liver diseases.METHODS:One hundred and forty patients with endstage liver diseases were randomized into two groups.Group 1,comprising 90 patients,received granulocyte colony stimulating factor for five days followed by autologous CD34 + and CD133 + stem cell infusion in the portal vein.Group 2,comprising 50 patients,received regular liver treatment only and served as a control group.RESULTS:Near normalization of liver enzymes and improvement in synthetic function were observed in 54.5% of the group 1 patients;13.6% of the patients showed stable states in the infused group.None of the patients in the control group showed improvement.No adverse effects were noted.CONCLUSION:Our data showed that a CD34 + and CD133 + stem cells infusion can be used as supportive treatment for end-stage liver disease with satisfactory tolerability.展开更多
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiate...Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.展开更多
In this paper,experimental findings concerning the kinetics of hematopoietic reconstitution are compared to corresponding clinical data.Although not clearly apparent,the transplantation practice seems to confirm the b...In this paper,experimental findings concerning the kinetics of hematopoietic reconstitution are compared to corresponding clinical data.Although not clearly apparent,the transplantation practice seems to confirm the basic proposals of experimental hematology concerning hematopoietic reconstitution resulting from successive waves of repopulation stemming from different subpopulations of progenitor and stem cells.One of the "f irst rate" parameters in clinical transplantations in hematology;i.e.the CD34+ positive cell dose,has been discussed with respect to the functional heterogeneity and variability of cell populations endowed by expression of CD34.This parameter is useful only if the relative proportion of stem and progenitor cells in the CD34+ cell population is more or less maintained in a series of patients or donors.This proportion could vary with respect to the source,pathology,treatment,processing procedure,the graft ex vivo treatment and so on.Therefore,a universal dose of CD34+ cells cannot be def ined.In addition,to avoid further confusion,the CD34+ cells should not be named "stem cells" or "progenitor cells" since these denominations only concern functionally characterized cell entities.展开更多
Objective: To investigate the expression and significance of caspase-3 protein in CD34^+ cells from cord blood (CB) during culture in vitro with different growth factors. Methods: RT-PCR, Western blot and flow cytomet...Objective: To investigate the expression and significance of caspase-3 protein in CD34^+ cells from cord blood (CB) during culture in vitro with different growth factors. Methods: RT-PCR, Western blot and flow cytometry techniques were used to detect the expression of caspase-3 in CD34^+ CB cells during culture in vitro. Results: Caspase-3 mRNA was constitutively expressed at a low level in freshly isolated CD34^+ cells. The expression of caspase-3 mRNA and protein was upregulated when these cellswere first expanded in suspension culture with growth factors for 3 days. However, only the 32 kDa inactive caspase-3 proenzyme was detected in the freshly isolated CD34^+ cells as well as during the first 3 days expansion with cytokines. With longer culture time in vitro, especially in the presence of the combination of IL-3, IL-6 and GM-CSF, caspase-3 was activated and a cleavage product of 20 kDa became detectable.Conclusion: Caspase-3 is involved in apoptosis of primitive CB CD34^+ cells during expansion in vitro.展开更多
To clarify the hematopoietic potential of various sub-classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with anti-CD34 and -CD38 McAb. We characterized two cell fra...To clarify the hematopoietic potential of various sub-classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with anti-CD34 and -CD38 McAb. We characterized two cell fractions in CD34+cells with or without CD38 expression. A clonogenic assay showed that most CFC were present in CD34+CD38+ population. Morphologic analysis showed that blast-like cells were more enriched in the CD34+CD38 fraction. To clarify the biologic differences between both fractions, we examined the more primitive progenitor cell function by assessing long-term culture-initiating cells (LTC-IC) on the stromal cells. At the first two weeks, more CF.C harvested from the culture in the fractions initiated with both populations. However, more LTC-IC were present during weeks 4 to 12 in the CD34+CD38- population. These results indicate the primitive progenitors are more enriched in CD34+CD38 population than in CD34+CD38+ cells.展开更多
AIM To evaluate the importance of the CD34+CD38-cell population when compared to the CD34+CD38+/low and CD34+CD38+/high leukemic cell sub-populations and to determine its correlations with leukemia characteristics and...AIM To evaluate the importance of the CD34+CD38-cell population when compared to the CD34+CD38+/low and CD34+CD38+/high leukemic cell sub-populations and to determine its correlations with leukemia characteristics and known prognostic factors, as well as with response to therapy and survival.METHODS Two hundred bone marrow samples were obtained at diagnosis from 200 consecutive patients with newly diagnosed acute myeloid leukemia(AML) were studied between September 2008 and December 2010 at our Institution(Hematology Department, Lyon, France). The CD34/CD38 cell profile was analyzed by multiparameter flowcytometry approach using 8 C panels and FACS CANTO and Diva software(BD Bioscience).RESULTS We analyzed CD34 and CD38 expression in bone marrow samples of 200 AML patients at diagnosis, and investigated the prognostic value of the most immature CD34+CD38-population. Using a cut-off value of 1% of CD34+CD38-from total "bulk leukemic cells" we found that a high(> 1%) level of CD34+CD38-blasts at diagnosis was correlated with advanced age, adverse cytogenetics as well as with a lower rate of complete response after induction and shorter disease-free survival. In a multivariate analysis considering age, leukocytosis, the % of CD34+ blasts cells and the standardized cytogenetic and molecular risk subgroups, a percentage of CD34+CD38-leukemic cells > 1% was an independent predictor of DFS [HR = 2.8(1.02-7.73), P = 0.04] and OS [HR = 2.65(1.09-6.43), P = 0.03].CONCLUSION Taken together, these results show that a CD34/CD38 "backbone" for leukemic cell analysis by multicolour flowcytometry at diagnosis provides useful prognostic information.展开更多
Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Me...Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.展开更多
Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse ...Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology.By leveraging these genes,our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy.Methods Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases.In the initial stage,we identified 67 differentially expressed genes associated with immune response in CD8+T cells.Subsequently,we narrowed our focus to three key genes,namely CXCL13,GBP2,and GZMB,which were used to construct a prognostic model.The accuracy of the model was assessed using the validation set data and receiver operating characteristic(ROC)curves.Furthermore,we employed various methods,including Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway,immune infiltration,and correlation analyses with CD274(PD-L1)to explore the model's predictive efficacy in immunotherapeutic responses.Additionally,we investigated the potential underlying biological pathways that contribute to divergent treatment responses.Results We successfully developed a model capable of predicting the prognosis of patients with TNBC.The areas under the curve(AUC)values for the 1-,3-,and 5-year survival predictions were 0.618,0.652,and 0.826,respectively.Employing this risk model,we stratified the samples into high-and low-risk groups.Through KEGG enrichment analysis,we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism,whereas the low-risk group demonstrated significant enrichment in cytokine pathways.Furthermore,immune landscape analysis revealed noteworthy variations between(PD-L1)expression and risk scores,indicating that our model effectively predicted the response of patients to immune-based treatments.Conclusion Our study demonstrates the potential of CXCL13,GBP2,and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC.These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.展开更多
Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help ...Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.展开更多
Acute myeloid leukemia(AML)is regarded as a stem cell disease.However,no one unique marker is expressed on leukemia stem cells(LSC)but not on leukemic blasts nor normal hematopoietic stem cells(HSC).CD34^(+)CD38^(-)wi...Acute myeloid leukemia(AML)is regarded as a stem cell disease.However,no one unique marker is expressed on leukemia stem cells(LSC)but not on leukemic blasts nor normal hematopoietic stem cells(HSC).CD34^(+)CD38^(-)with or without CD123 or CD44 subpopulations are immunophenotypically defined as putative LSC fractions in AML.Nevertheless,markers that can be effectively and simply held responsible for the intrinsical heterogeneity of LSC is still unclear.In the present study,we examined the frequency of three different LSC subtypes(CD34^(+)CD38^(-),CD34^(+)CD38^(-)CD123^(+),CD34^(+)CD38^(-)CD44^(+))in AML at diagnosis.We then validated their prognostic significance on the relevance of spectral features for diagnostic stratification,immune status,induction therapy response,treatment effect maintenance,and long^(-)term survival.In our findings,high proportions of the above three different LSC subtypes were all significantly characterized with low complete remission(CR)rate,high relapse/refractory rate,poor overall survival(OS),frequent FLT3^(-)ITD mutation,the high level of regulatory T cells(Treg)and monocytic myeloid^(-)derived suppressor cells(M^(-)MDSC).However,there was no significant statistical difference in all kinds of other clinical performance among the three different LSC groups.It was demonstrated that CD34^(+)CD38^(-)subpopulation without CD123 and CD44 might be held responsible for LSC and correlated with an imbalance of immune cell subsets in AML.展开更多
文摘BACKGROUND To date,no specific treatment has been established to reverse progressive chronic kidney disease(CKD).AIM To evaluate the safety and efficacy of autologous CD34^(+)cell transplantation in CKD patients who exhibited a progressive decline in renal function.METHODS The estimated glomerular filtration rate(eGFR)at the beginning of the study was 15.0-28.0 mL/minute/1.73 m^(2).After five days of treatment with the granulocyte colony-stimulating factor,mononuclear cells were harvested and CD34^(+)cells were magnetically collected.CD34^(+)cells were directly injected into the bilateral renal arteries twice(at 0 and 3 months),and their safety and efficacy were evaluated for 6 months.RESULTS Four patients were enrolled and completed the study.Three of four patients showed improvement in eGFR slope(eGFR slope>0 mL/minute/1.73 m^(2)),with the monthly slope of eGFR(delta eGFR)changing from-1.36±1.1(pretreatment)to^(+)0.22±0.71(at 6 months)mL/minute/1.73 m^(2)/month(P=0.135)after cell therapy.Additionally,intrarenal resistive index(P=0.004)and shear wave velocity(P=0.04)were significantly improved after cell therapy.One patient experienced transient fever after cell therapy,and experienced bone pain during granulocyte colony-stimulating factor administration.However,no severe adverse events were reported.CONCLUSION In conclusion,our findings suggest that repetitive peripheral blood-derived autologous CD34^(+)cell transplantation into the renal arteries is safe,feasible,and may be effective for patients with progressive CKD.However,a large-scale clinical trial is warranted to validate the efficacy of repetitive regenerative cell therapy using autologous CD34^(+)cells in patients with progressive CKD.
基金supported by the Medical Science and Technology Research Foundation of Guangdong Province(No.A2020559).
文摘Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.
文摘CD34+ cells from human umbilical cord blood were purified by Dynal beads M-450 CD34 immunoselection system and cultured in the presence of various cytokines alone or in combination, including stem cell factor (SCF), interleukin-6 (IL-6) and erythropoietin (EPO). The results revealed that: (D In methylcellulose culture, the plating efficiencies of purified cord blood CD34+ cells were much different when stimulated by various cytokines. IL-6 alone had the lowest colo-ny yield, while the combination of SCF, IL-6 and EPO had the highest yield. ② In the suspension culture, IL-6 alone or IL-6 + EPO had little expanding effect on cord blood CD34+ celis, the other cytokine combinations could expand cord blood CD34+ celis at different Ievels. Among them, the combination of SCF, IL-6 and EPO had the maximal expanding effect on cord blood CD34+ celis, the number of progenitor celis peaked at day 21, about 29-fold increase and nucleated celis increased approximately 3676-fold at day 28. The expanding effect of
基金supported by the National Key R&D Program of China (2019YFA0508502/3 and 2021YFC2300604)the Natural Science Foundation of China (Reference numbers 82388201, 82241216, and 32270963)+1 种基金the Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYZD20220008)the Anhui Key Research and Development Plan (Reference number 2023z04020011)。
文摘Objective: The human cluster of differentiation(CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer(NK) cells targeting hematologic malignancies(HMs).Methods: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine(PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients.Results: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS–CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an “exhausted” phenotype of intratumoral NK cells in patients with HMs or solid tumors.Conclusions: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.
基金Supported by Grants from Asian Healthcare Foundation
文摘AIM: To study the effect of mobilized peripheral blood autologous CD34 positive(CD34+) cell infusion in patients with non-viral decompensated cirrhosis.METHODS: Cirrhotic patients of non-viral etiology were divided into 2 groups based on their willingness to be listed for deceased donor liver transplant(DDLT)(control, n = 23) or to receive autologous CD34+ cell infusion through the hepatic artery(study group, n= 22). Patients in the study group were admitted to hospital and received granulocyte colony stimulating factor injections 520 μg/d for 3 consecutive days to mobilize CD34+ cells from the bone marrow. On day 4,leukapheresis was done and CD34+ cells were isolated using CliniMAC magnetic cell sorter. The isolated CD34+ cells were infused into the hepatic artery under radiological guidance. The patients were discharged within 48 h. The control group received standard of care treatment for liver cirrhosis and were worked up for DDLT as per protocol of the institute. Both groups were followed up every week for 4 wk and then every month for 3 mo.RESULTS: In the control and the study group, the cause of cirrhosis was cryptogenic in 18(78.2%) and16(72.72%) and alcohol related in 5(21.7%) and6(27.27%), respectively. The mean day 3 cell count(cells/μL) was 27.00 ± 20.43 with a viability of 81.84± 11.99%. and purity of 80%-90%. Primary end point analysis revealed that at 4 wk, the mean serum albumin in the study group increased significantly(2.83± 0.36 vs 2.43 ± 0.42, P = 0.001) when compared with controls. This improvement in albumin was,however, not sustained at 3 mo. However, at the end of3 mo there was a statistically significant improvement in serum creatinine in the study group(0.96 ± 0.33 vs 1.42 ± 0.70, P = 0.01) which translated into a significant improvement in the Model for End-Stage Liver Disease score(15.75 ± 5.13 vs 19.94 ± 6.68,P = 0.04). On statistical analysis of secondary end points, the transplant free survival at the end of 1 mo and 3 mo did not show any significant difference(P =0.60) when compared to the control group. There was no improvement in aspartate transaminase, alanine transaminase, and bilirubin at any point in the study population. There was no mortality benefit in the study group. The procedure was safe with no procedural or treatment related complications.CONCLUSION: Autologous CD 34+ cell infusion is safe and effectively improves liver function in the short term and may serve as a bridge to liver transplantation.
文摘AIM:To assess the utility of an autologous CD34 + and CD133 + stem cells infusion as a possible therapeutic modality in patients with end-stage liver diseases.METHODS:One hundred and forty patients with endstage liver diseases were randomized into two groups.Group 1,comprising 90 patients,received granulocyte colony stimulating factor for five days followed by autologous CD34 + and CD133 + stem cell infusion in the portal vein.Group 2,comprising 50 patients,received regular liver treatment only and served as a control group.RESULTS:Near normalization of liver enzymes and improvement in synthetic function were observed in 54.5% of the group 1 patients;13.6% of the patients showed stable states in the infused group.None of the patients in the control group showed improvement.No adverse effects were noted.CONCLUSION:Our data showed that a CD34 + and CD133 + stem cells infusion can be used as supportive treatment for end-stage liver disease with satisfactory tolerability.
基金Supported by The Swiss National Science Foundation, SNF grants No. 310030-120432 and No. 310030-138519, to Scherberich Agrants from The AllerGen NCE, The Canadian Institutes for Health Research and The Heart and Stroke Foundation of BC and Yukon, to McNagny KM
文摘Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.
文摘In this paper,experimental findings concerning the kinetics of hematopoietic reconstitution are compared to corresponding clinical data.Although not clearly apparent,the transplantation practice seems to confirm the basic proposals of experimental hematology concerning hematopoietic reconstitution resulting from successive waves of repopulation stemming from different subpopulations of progenitor and stem cells.One of the "f irst rate" parameters in clinical transplantations in hematology;i.e.the CD34+ positive cell dose,has been discussed with respect to the functional heterogeneity and variability of cell populations endowed by expression of CD34.This parameter is useful only if the relative proportion of stem and progenitor cells in the CD34+ cell population is more or less maintained in a series of patients or donors.This proportion could vary with respect to the source,pathology,treatment,processing procedure,the graft ex vivo treatment and so on.Therefore,a universal dose of CD34+ cells cannot be def ined.In addition,to avoid further confusion,the CD34+ cells should not be named "stem cells" or "progenitor cells" since these denominations only concern functionally characterized cell entities.
基金The study was supported by a grant from the National Natural Science Foundation of China(No.39928010)
文摘Objective: To investigate the expression and significance of caspase-3 protein in CD34^+ cells from cord blood (CB) during culture in vitro with different growth factors. Methods: RT-PCR, Western blot and flow cytometry techniques were used to detect the expression of caspase-3 in CD34^+ CB cells during culture in vitro. Results: Caspase-3 mRNA was constitutively expressed at a low level in freshly isolated CD34^+ cells. The expression of caspase-3 mRNA and protein was upregulated when these cellswere first expanded in suspension culture with growth factors for 3 days. However, only the 32 kDa inactive caspase-3 proenzyme was detected in the freshly isolated CD34^+ cells as well as during the first 3 days expansion with cytokines. With longer culture time in vitro, especially in the presence of the combination of IL-3, IL-6 and GM-CSF, caspase-3 was activated and a cleavage product of 20 kDa became detectable.Conclusion: Caspase-3 is involved in apoptosis of primitive CB CD34^+ cells during expansion in vitro.
文摘To clarify the hematopoietic potential of various sub-classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with anti-CD34 and -CD38 McAb. We characterized two cell fractions in CD34+cells with or without CD38 expression. A clonogenic assay showed that most CFC were present in CD34+CD38+ population. Morphologic analysis showed that blast-like cells were more enriched in the CD34+CD38 fraction. To clarify the biologic differences between both fractions, we examined the more primitive progenitor cell function by assessing long-term culture-initiating cells (LTC-IC) on the stromal cells. At the first two weeks, more CF.C harvested from the culture in the fractions initiated with both populations. However, more LTC-IC were present during weeks 4 to 12 in the CD34+CD38- population. These results indicate the primitive progenitors are more enriched in CD34+CD38 population than in CD34+CD38+ cells.
文摘AIM To evaluate the importance of the CD34+CD38-cell population when compared to the CD34+CD38+/low and CD34+CD38+/high leukemic cell sub-populations and to determine its correlations with leukemia characteristics and known prognostic factors, as well as with response to therapy and survival.METHODS Two hundred bone marrow samples were obtained at diagnosis from 200 consecutive patients with newly diagnosed acute myeloid leukemia(AML) were studied between September 2008 and December 2010 at our Institution(Hematology Department, Lyon, France). The CD34/CD38 cell profile was analyzed by multiparameter flowcytometry approach using 8 C panels and FACS CANTO and Diva software(BD Bioscience).RESULTS We analyzed CD34 and CD38 expression in bone marrow samples of 200 AML patients at diagnosis, and investigated the prognostic value of the most immature CD34+CD38-population. Using a cut-off value of 1% of CD34+CD38-from total "bulk leukemic cells" we found that a high(> 1%) level of CD34+CD38-blasts at diagnosis was correlated with advanced age, adverse cytogenetics as well as with a lower rate of complete response after induction and shorter disease-free survival. In a multivariate analysis considering age, leukocytosis, the % of CD34+ blasts cells and the standardized cytogenetic and molecular risk subgroups, a percentage of CD34+CD38-leukemic cells > 1% was an independent predictor of DFS [HR = 2.8(1.02-7.73), P = 0.04] and OS [HR = 2.65(1.09-6.43), P = 0.03].CONCLUSION Taken together, these results show that a CD34/CD38 "backbone" for leukemic cell analysis by multicolour flowcytometry at diagnosis provides useful prognostic information.
基金supported by the National Natural Science Foundation of China(No.81972681,82103677)Tianjin Education Commission Research Plan Project(No.2021KJ201)+1 种基金Shenzhen High-level Hospital Construction Fund(No.G2022139)Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-009A).
文摘Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.
基金supported by Joint Funds for the Innovation of Science and Technology,Fujian Province[Grant number:2020Y9039]Fujian Provincial Health Technology Project[Grant number:2022GGA032].
文摘Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology.By leveraging these genes,our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy.Methods Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases.In the initial stage,we identified 67 differentially expressed genes associated with immune response in CD8+T cells.Subsequently,we narrowed our focus to three key genes,namely CXCL13,GBP2,and GZMB,which were used to construct a prognostic model.The accuracy of the model was assessed using the validation set data and receiver operating characteristic(ROC)curves.Furthermore,we employed various methods,including Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway,immune infiltration,and correlation analyses with CD274(PD-L1)to explore the model's predictive efficacy in immunotherapeutic responses.Additionally,we investigated the potential underlying biological pathways that contribute to divergent treatment responses.Results We successfully developed a model capable of predicting the prognosis of patients with TNBC.The areas under the curve(AUC)values for the 1-,3-,and 5-year survival predictions were 0.618,0.652,and 0.826,respectively.Employing this risk model,we stratified the samples into high-and low-risk groups.Through KEGG enrichment analysis,we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism,whereas the low-risk group demonstrated significant enrichment in cytokine pathways.Furthermore,immune landscape analysis revealed noteworthy variations between(PD-L1)expression and risk scores,indicating that our model effectively predicted the response of patients to immune-based treatments.Conclusion Our study demonstrates the potential of CXCL13,GBP2,and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC.These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.
文摘Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.
基金approved by the Institutional Review Board(IRB)Institutional of the Second Hospital of Anhui Medical University(No.LLSC20140009).
文摘Acute myeloid leukemia(AML)is regarded as a stem cell disease.However,no one unique marker is expressed on leukemia stem cells(LSC)but not on leukemic blasts nor normal hematopoietic stem cells(HSC).CD34^(+)CD38^(-)with or without CD123 or CD44 subpopulations are immunophenotypically defined as putative LSC fractions in AML.Nevertheless,markers that can be effectively and simply held responsible for the intrinsical heterogeneity of LSC is still unclear.In the present study,we examined the frequency of three different LSC subtypes(CD34^(+)CD38^(-),CD34^(+)CD38^(-)CD123^(+),CD34^(+)CD38^(-)CD44^(+))in AML at diagnosis.We then validated their prognostic significance on the relevance of spectral features for diagnostic stratification,immune status,induction therapy response,treatment effect maintenance,and long^(-)term survival.In our findings,high proportions of the above three different LSC subtypes were all significantly characterized with low complete remission(CR)rate,high relapse/refractory rate,poor overall survival(OS),frequent FLT3^(-)ITD mutation,the high level of regulatory T cells(Treg)and monocytic myeloid^(-)derived suppressor cells(M^(-)MDSC).However,there was no significant statistical difference in all kinds of other clinical performance among the three different LSC groups.It was demonstrated that CD34^(+)CD38^(-)subpopulation without CD123 and CD44 might be held responsible for LSC and correlated with an imbalance of immune cell subsets in AML.