Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan...Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.展开更多
Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is ...Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation.展开更多
Background:Autophagy dysfunction plays a crucial role in tau accumulation and neurodegeneration in Alzheimer’s disease(AD).This study aimed to investigate whether and how the accumulating tau may in turn affect autop...Background:Autophagy dysfunction plays a crucial role in tau accumulation and neurodegeneration in Alzheimer’s disease(AD).This study aimed to investigate whether and how the accumulating tau may in turn affect autophagy.Methods:The primary hippocampal neurons,N2a and HEK293T cells with tau overexpression were respectively starved and treated with vinblastine to study the effects of tau on the initiating steps of autophagy,which was analysed by Student’s two-tailed t-test.The rapamycin and concanamycin A were employed to inhibit the mammalian target of rapamycin kinase complex 1(mTORC1)activity and the vacuolar H+-ATPase(v-ATPase)activity,respectively,which were analysed by One-way ANOVA with post hoc tests.The Western blotting,co-immunoprecipitation and immunofuorescence staining were conducted to gain insight into the mechanisms underlying the tau effects of mTORC1 signaling alterations,as analysed by Student’s two-tailed t-test or One-way ANOVA with post hoc tests.The autophagosome formation was detected by immunofuorescence staining and transmission electron microscopy.The amino acids(AA)levels were detected by high performance liquid chromatography(HPLC).Results:We observed that overexpressing human full-length wild-type tau to mimic AD-like tau accumulation induced autophagy deficits.Further studies revealed that the increased tau could bind to the prion-related domain of T cell intracellular antigen 1(PRD-TIA1)and this association significantly increased the intercellular level of amino acids(Leucine,P=0.0038;Glutamic acid,P=0.0348;Alanine,P=0.0037;Glycine,P=0.0104),with concordant upregulation of mTORC1 activity[phosphorylated eukaryotic translation initiation factor 4E-binding protein 1(p-4EBP1),P<0.0001;phosphorylated 70 kD ribosomal protein S6 kinase 1(p-p70S6K1),P=0.0001,phosphorylated unc-51-like autophagyactivating kinase 1(p-ULK1),P=0.0015]and inhibition of autophagosome formation[microtubuleassociated protein light chain 3 II(LC3 II),P=0.0073;LC3 puncta,P<0.0001].As expected,this tau-induced deficit of autophagosome formation in turn aggravated tau accumulation.Importantly,we also found that blocking TIA1 and tau interaction by overexpressing PRD-TIA1,downregulating the endogenous TIA1 expression by shRNA,or downregulating tau protein level by a small proteolysis targeting chimera(PROTAC)could remarkably attenuate tau-induced autophagy impairment.Conclusions:Our findings reveal that AD-like tau accumulation inhibits autophagosome formation and induces autophagy deficits by activating the TIA1/amino acid/mTORC1 pathway,and thus this work reveals new insight into tau-associated neurodegeneration and provides evidence supporting the use of new therapeutic targets for AD treat-ment and that of related tauopathies.展开更多
基金supported by the tenth batch of"3221"industrial innovation and scientific research projects in Bengbu City(beng talent[2020]No.8)the 2021 Bengbu Medical College Science and Technology Project[Natural Science,Project Number:2021byzd217].
文摘Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.
文摘Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation.
基金supported by grants from the Natural Science Foundation of China(91949205,31730035,81721005)the Science and Technology Committee of China(2016YFC1305800)+1 种基金the Special Project of Technological Innovation of Hubei Province(2018ACA142)Guangdong Provincial Key S&T Program(2018B030336001)。
文摘Background:Autophagy dysfunction plays a crucial role in tau accumulation and neurodegeneration in Alzheimer’s disease(AD).This study aimed to investigate whether and how the accumulating tau may in turn affect autophagy.Methods:The primary hippocampal neurons,N2a and HEK293T cells with tau overexpression were respectively starved and treated with vinblastine to study the effects of tau on the initiating steps of autophagy,which was analysed by Student’s two-tailed t-test.The rapamycin and concanamycin A were employed to inhibit the mammalian target of rapamycin kinase complex 1(mTORC1)activity and the vacuolar H+-ATPase(v-ATPase)activity,respectively,which were analysed by One-way ANOVA with post hoc tests.The Western blotting,co-immunoprecipitation and immunofuorescence staining were conducted to gain insight into the mechanisms underlying the tau effects of mTORC1 signaling alterations,as analysed by Student’s two-tailed t-test or One-way ANOVA with post hoc tests.The autophagosome formation was detected by immunofuorescence staining and transmission electron microscopy.The amino acids(AA)levels were detected by high performance liquid chromatography(HPLC).Results:We observed that overexpressing human full-length wild-type tau to mimic AD-like tau accumulation induced autophagy deficits.Further studies revealed that the increased tau could bind to the prion-related domain of T cell intracellular antigen 1(PRD-TIA1)and this association significantly increased the intercellular level of amino acids(Leucine,P=0.0038;Glutamic acid,P=0.0348;Alanine,P=0.0037;Glycine,P=0.0104),with concordant upregulation of mTORC1 activity[phosphorylated eukaryotic translation initiation factor 4E-binding protein 1(p-4EBP1),P<0.0001;phosphorylated 70 kD ribosomal protein S6 kinase 1(p-p70S6K1),P=0.0001,phosphorylated unc-51-like autophagyactivating kinase 1(p-ULK1),P=0.0015]and inhibition of autophagosome formation[microtubuleassociated protein light chain 3 II(LC3 II),P=0.0073;LC3 puncta,P<0.0001].As expected,this tau-induced deficit of autophagosome formation in turn aggravated tau accumulation.Importantly,we also found that blocking TIA1 and tau interaction by overexpressing PRD-TIA1,downregulating the endogenous TIA1 expression by shRNA,or downregulating tau protein level by a small proteolysis targeting chimera(PROTAC)could remarkably attenuate tau-induced autophagy impairment.Conclusions:Our findings reveal that AD-like tau accumulation inhibits autophagosome formation and induces autophagy deficits by activating the TIA1/amino acid/mTORC1 pathway,and thus this work reveals new insight into tau-associated neurodegeneration and provides evidence supporting the use of new therapeutic targets for AD treat-ment and that of related tauopathies.