Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cott...Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.展开更多
Background: Omicron JN.1 has become the dominant SARS-CoV-2 variant in recent months. JN.1 has the highest number of amino acid mutations in its receptor binding domain (RBD) and has acquired a hallmark L455S mutation...Background: Omicron JN.1 has become the dominant SARS-CoV-2 variant in recent months. JN.1 has the highest number of amino acid mutations in its receptor binding domain (RBD) and has acquired a hallmark L455S mutation. The immune evasion capability of JN.1 is a subject of scientific investigation. The US CDC used SGTF of TaqPath COVID-19 Combo Kit RT-qPCR as proxy indicator of JN.1 infections for evaluation of the effectiveness of updated monovalent XBB.1.5 COVID-19 vaccines against JN.1 and recommended that all persons aged ≥ 6 months should receive an updated COVID-19 vaccine dose. Objective: Recommend Sanger sequencing instead of proxy indicator to diagnose JN.1 infections to generate the data based on which guidelines are made to direct vaccination policies. Methods: The RNA in nasopharyngeal swab specimens from patients with clinical respiratory infection was subjected to nested RT-PCR, targeting a 398-base segment of the N-gene and a 445-base segment of the RBD of SARS-CoV-2 for amplification. The nested PCR amplicons were sequenced. The DNA sequences were analyzed for amino acid mutations. Results: The N-gene sequence showed R203K, G204R and Q229K, the 3 mutations associated with Omicron BA.2.86 (+JN.1). The RBD sequence showed 24 of the 26 known amino acid mutations, including the hallmark L455S mutation for JN.1 and the V483del for BA.2.86 lineage. Conclusions: Sanger sequencing of a 445-base segment of the SARS-CoV-2 RBD is useful for accurate determination of emerging variants. The CDC may consider using Sanger sequencing of the RBD to diagnose JN.1 infections for statistical analysis in making vaccination policies.展开更多
In recent years,some super hybrid rice varieties were bred with strong culms and large panicles,which are mainly contributed by the ipa1-2D locus.A gain-of-function allele of OsSPL14 is the ipa1-2D and it can greatly ...In recent years,some super hybrid rice varieties were bred with strong culms and large panicles,which are mainly contributed by the ipa1-2D locus.A gain-of-function allele of OsSPL14 is the ipa1-2D and it can greatly increase the panicle primary branch number.However,the key downstream genes mediating this trait variation are not fully explored.In this study,we developed high-quality near-isogenic lines(NILs)with a difference of only 30 kb chromosomal segment covering the ipa1-2D locus.Using the NILs,we explored the impact of ipa1-2D on five sequential stages of early inflorescence development,and found that the locus can greatly enhance the initiation of primary branch meristems.A transcriptomic analysis was performed to unveil the downstream molecular network of ipa1-2D,and 87 genes were found differentially expressed,many of which are involved in metabolism and catalysis processes.In addition,transgenic lines of overexpression and RNA interference were generated to shape different levels of OsSPL14.They were also used to validate the expression variation explored by transcriptome.Based on the gene annotation,twelve potential downstream targets of ipa1-2D were selected,and their expression variation was confirmed by qRT-PCR analysis both in NILs and transgenic lines.This research expands the molecular network underlying ipa1-2D and provides novel gene information which might be involved in the control of panicle branching.We discussed the potential function of identified genes and highlighted their values for future function exploration and breeding application.展开更多
Zymography and in situ hybridization were used to investigate matrixmetalloproteinase -2, -9 (MMP -2, MMP-9) activities and expressions of MMP -2, -9 and TIMP1, -2, -3 (tissue inhibitors of matrix metallo-proteinases)...Zymography and in situ hybridization were used to investigate matrixmetalloproteinase -2, -9 (MMP -2, MMP-9) activities and expressions of MMP -2, -9 and TIMP1, -2, -3 (tissue inhibitors of matrix metallo-proteinases) mRNA in the rat uterus during estrouscycle. The relative activity was semiquanted by using densitometric analysis. The MMP-2(67 kDa) activity in every stage during estrpus cycle was detected by zymography. MMP-2activity was highest at proestrus; higher at estrus and metaestrus; lowest at diestrus. Throughin situ hybridization, MMP -2, -9, TIMP -1~ -3 mRNA mainly in hasal stroma cells of uterineendometrium were detected. The positive signals of MMP -2 and -9 mRNAs in hasal stromacells were shown stronger at proestrus, estrus and metaestrus while they showed the weakest atdiestrus. The expression of MMP -2 mRNA coincided with MMP -2 activity change. MMP-2and -9 mRNAs were also highly expressed in uterine circular muscle at estrus. Weak signals ofMMP -9 mRNA were detected in uterine luminal and glandular epithelial cells at estrus.TIMP -1 mRNA in hasal stroma cells was shown as the strongest expression at estrus andmetaestrus; stronger at proestrus and the weakest at diestrus. TIMP-2 mRNA in basal stromacells was stronger at estrus and diestrus; weaker at proestrus and metaestrus. TIMP -1 and -2mRNAs were also highly expressed in uterine luminal and glandular epithelial cells at estrus.TIMP -3 mRNA in hasal stroma cells revealed the strongest expression at estrus; stronger atdiestrus and metaestrus and showed the weakest at proestrus. The mRNA was also highlyexpressed in uterine circular muscle at estrus. In short, our present results provide evidencethat MMP -2, -9 and TIMP -1~ -3 were involved in rat uterine endometrium reconstructionduring estrous cycle.展开更多
文摘Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.
文摘Background: Omicron JN.1 has become the dominant SARS-CoV-2 variant in recent months. JN.1 has the highest number of amino acid mutations in its receptor binding domain (RBD) and has acquired a hallmark L455S mutation. The immune evasion capability of JN.1 is a subject of scientific investigation. The US CDC used SGTF of TaqPath COVID-19 Combo Kit RT-qPCR as proxy indicator of JN.1 infections for evaluation of the effectiveness of updated monovalent XBB.1.5 COVID-19 vaccines against JN.1 and recommended that all persons aged ≥ 6 months should receive an updated COVID-19 vaccine dose. Objective: Recommend Sanger sequencing instead of proxy indicator to diagnose JN.1 infections to generate the data based on which guidelines are made to direct vaccination policies. Methods: The RNA in nasopharyngeal swab specimens from patients with clinical respiratory infection was subjected to nested RT-PCR, targeting a 398-base segment of the N-gene and a 445-base segment of the RBD of SARS-CoV-2 for amplification. The nested PCR amplicons were sequenced. The DNA sequences were analyzed for amino acid mutations. Results: The N-gene sequence showed R203K, G204R and Q229K, the 3 mutations associated with Omicron BA.2.86 (+JN.1). The RBD sequence showed 24 of the 26 known amino acid mutations, including the hallmark L455S mutation for JN.1 and the V483del for BA.2.86 lineage. Conclusions: Sanger sequencing of a 445-base segment of the SARS-CoV-2 RBD is useful for accurate determination of emerging variants. The CDC may consider using Sanger sequencing of the RBD to diagnose JN.1 infections for statistical analysis in making vaccination policies.
基金This work was supported by grants from the National Natural Science Foundation of China(31600990,31871217 and 32072037)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJA210002)+2 种基金Project of Special Funding for Crop Science Discipline Development(yzuxk202006)the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement(ZW202010)the Key Research and Development Program of Jiangsu Province(BE2018357).
文摘In recent years,some super hybrid rice varieties were bred with strong culms and large panicles,which are mainly contributed by the ipa1-2D locus.A gain-of-function allele of OsSPL14 is the ipa1-2D and it can greatly increase the panicle primary branch number.However,the key downstream genes mediating this trait variation are not fully explored.In this study,we developed high-quality near-isogenic lines(NILs)with a difference of only 30 kb chromosomal segment covering the ipa1-2D locus.Using the NILs,we explored the impact of ipa1-2D on five sequential stages of early inflorescence development,and found that the locus can greatly enhance the initiation of primary branch meristems.A transcriptomic analysis was performed to unveil the downstream molecular network of ipa1-2D,and 87 genes were found differentially expressed,many of which are involved in metabolism and catalysis processes.In addition,transgenic lines of overexpression and RNA interference were generated to shape different levels of OsSPL14.They were also used to validate the expression variation explored by transcriptome.Based on the gene annotation,twelve potential downstream targets of ipa1-2D were selected,and their expression variation was confirmed by qRT-PCR analysis both in NILs and transgenic lines.This research expands the molecular network underlying ipa1-2D and provides novel gene information which might be involved in the control of panicle branching.We discussed the potential function of identified genes and highlighted their values for future function exploration and breeding application.
文摘Zymography and in situ hybridization were used to investigate matrixmetalloproteinase -2, -9 (MMP -2, MMP-9) activities and expressions of MMP -2, -9 and TIMP1, -2, -3 (tissue inhibitors of matrix metallo-proteinases) mRNA in the rat uterus during estrouscycle. The relative activity was semiquanted by using densitometric analysis. The MMP-2(67 kDa) activity in every stage during estrpus cycle was detected by zymography. MMP-2activity was highest at proestrus; higher at estrus and metaestrus; lowest at diestrus. Throughin situ hybridization, MMP -2, -9, TIMP -1~ -3 mRNA mainly in hasal stroma cells of uterineendometrium were detected. The positive signals of MMP -2 and -9 mRNAs in hasal stromacells were shown stronger at proestrus, estrus and metaestrus while they showed the weakest atdiestrus. The expression of MMP -2 mRNA coincided with MMP -2 activity change. MMP-2and -9 mRNAs were also highly expressed in uterine circular muscle at estrus. Weak signals ofMMP -9 mRNA were detected in uterine luminal and glandular epithelial cells at estrus.TIMP -1 mRNA in hasal stroma cells was shown as the strongest expression at estrus andmetaestrus; stronger at proestrus and the weakest at diestrus. TIMP-2 mRNA in basal stromacells was stronger at estrus and diestrus; weaker at proestrus and metaestrus. TIMP -1 and -2mRNAs were also highly expressed in uterine luminal and glandular epithelial cells at estrus.TIMP -3 mRNA in hasal stroma cells revealed the strongest expression at estrus; stronger atdiestrus and metaestrus and showed the weakest at proestrus. The mRNA was also highlyexpressed in uterine circular muscle at estrus. In short, our present results provide evidencethat MMP -2, -9 and TIMP -1~ -3 were involved in rat uterine endometrium reconstructionduring estrous cycle.