An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper i...An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper include solitary wave solutions, rational solutions, triangular periodic solutions, Jacobi and Weierstrass doubly periodic solutions. Among them, the Jacobi periodic solutions exactly degenerate to the solutions at a certain limit condition. Compared with most existing tanh method, the method used here can give new and more general solutions. More importantly, this method provides a guldeline to classifj, the various types of the solution according to some parameters.展开更多
The Caudrey-Dodd-Gibbon-Kotera Sawada (CDGKS) equation has attracted many physicists and mathematicians. In this paper, based on the idea of variable-coefficient balancing-act method and the computerized .symbolic com...The Caudrey-Dodd-Gibbon-Kotera Sawada (CDGKS) equation has attracted many physicists and mathematicians. In this paper, based on the idea of variable-coefficient balancing-act method and the computerized .symbolic compu tation, some exact analytic solutions for the CDGKS equation have been obtained.展开更多
基金The project supported by the City University of Hong Kong Strategic Research under Grant No. 7001791
文摘An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper include solitary wave solutions, rational solutions, triangular periodic solutions, Jacobi and Weierstrass doubly periodic solutions. Among them, the Jacobi periodic solutions exactly degenerate to the solutions at a certain limit condition. Compared with most existing tanh method, the method used here can give new and more general solutions. More importantly, this method provides a guldeline to classifj, the various types of the solution according to some parameters.
基金This workis supported by the National Natural Science Foundation of China under Grant (60372095)by the science and technology development pro-gramof Beijing Municipal Commission of Education (KM200410772002)by the Beijing Excellent Talent Fund.
文摘The Caudrey-Dodd-Gibbon-Kotera Sawada (CDGKS) equation has attracted many physicists and mathematicians. In this paper, based on the idea of variable-coefficient balancing-act method and the computerized .symbolic compu tation, some exact analytic solutions for the CDGKS equation have been obtained.