A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori infor...A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover.展开更多
In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver functio...In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.展开更多
s Western Yunnan is located at the boundary of collision or underthrusting zone of Eurasian plate and is influenced by many times tectonic movements. With very complex geological environment and tectonic background, i...s Western Yunnan is located at the boundary of collision or underthrusting zone of Eurasian plate and is influenced by many times tectonic movements. With very complex geological environment and tectonic background, it is one of the seismically active areas. In the paper, the teleseismic records were selected from 16 national, local and mo-bile stations, including 4 very-wide-band mobile stations of PASSCAL. And nearly 2 000 receiver functions were extracted. Two measuring lines are 650 km and 450 km, respectively and across some major tectonic units in Western Yunnan. It is indicated that Nujiang might be a seam characterized by underthrusting. The western and eastern boundaries of Sichuan-Yunnan rhombus block, i.e., Honghe and Xiaojiang faults, might be an erection seam or collision belt. Panxi tectonic zone still has the characteristics of continental rift valley, that is, the surface is hollow and the upper mantle is upwarping. The tectonic situation in Western Yunnan is of certain regulation with the interlacing distribution of orogenic zone and seam. The crustal thickness decreases gradually from the north to the south and the S wave velocity is globally lower here.展开更多
We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surfa...We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at -25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LYZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evi- dence, it is indicated that rock strength is high and defor- mation is weak in this area, which is why the level of seismicity is quite low. The profile at ~ 23~N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.展开更多
Ordos Block has undergone rapid uplift,and a series of rift basins have been formed around the block since the Cenozoic,but the formation mechanisms remain controversial.A high-resolution 3 D velocity structure of cru...Ordos Block has undergone rapid uplift,and a series of rift basins have been formed around the block since the Cenozoic,but the formation mechanisms remain controversial.A high-resolution 3 D velocity structure of crust and mantle is important for understanding the lithospheric deformation and deep dynamic process.A here we present a 3 D S-wave velocity structure of the crust and upper mantle in the Ordos Block and surrounding regions by joint inversion of receiver functions and surface wave data from a dense broadband seismic deployment.The lithosphere of the Ordos Block exhibits an obvious highvelocity anomaly.In the east and north of the Ordos and the southwestern part of the Tibetan Plateau,obvious low-velocity anomalies are detected in the upper mantle and extend into the Ordos.The lithosphere of the Ordos Block is thick in the center and thin at the edge,while the crust is relatively thin in the center and thick in the southwest and northeast.The crustal thickness of the tensional basin in the north is greater than that in the central Ordos.We suggest that the outward expansion of the mantle thermal materials in eastern Tibet and the upper mantle thermal upwelling in the eastern part of the North China Craton lead to the non-uniform lithospheric thinning,temperature rise and density reduction of the Ordos Block.The additional buoyancy and thermodynamic effects provided by them contributed to the continuous uplift of the Ordos Block since the Cenozoic.Influenced by the extrusion of Tibetan Plateau,the crustal thickening and rapid uplift occur in the southwestern and northern parts of the Ordos Block.The lithospheric structures of the Alxa and Ordos Blocks are different,and they may belong to different independent blocks before the Mesozoic.展开更多
Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inv...Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inversion approaches. The rotated correction function is applied to analyzing high quality SeS records from five earthquakes at distance of 25°-35° to obtain shear wave splitting parameters of the lithosphere. The result from the deepest earthquake among the five events indicates that the polarization of the fast shear wave is N94°E, which means the direction of extensional stress or the moving of the upper mantle mass in Xisha Islands is nearly west to east and confirms that the crust in this region is a transitional one and the driving force beneath the crust is from the moving mass consistent with the Eurasian plate. The anisotropy effective thickness is estimated about 100 km based on the time delay of 1.3 s between the fast and slow shear waves. The receiver function is applied to analyzing high quality P wave records from nine earthquakes at distance of 20°- 60° to obtain the vertical distribution pattern of shear wave velocity beneath the station. The result indicates that the crust could be divided into three layers: the uppermost crust (5 km above) is a velocity gradient zone consisting of several small layers, where the shear wave velocity increases from 1.5 to 3.5 km/s gradually; the 5 - 16 km depth interval also consiss of several small layers of which the mean velocity is about 3.8 km/s; and the lower crust ( 16.0 - 26. 5 km) is an obvious low velocity layer with a velocity of about 3.6 km/s. The buried depth of the Moho discontinuity is 26.5 kin, the mean velocity of the layers beneath the Moho is about 4.7 km/s and there is an obvious low velocity layer just beneath the Moho. Moreover, analysis of the arrival time of converted waves and the swinging variation of velocity around the initial model suggests that smaller layers in the model maybe are not reliable but the low velocity layer between 16 and 26.5 km maybe is the real one that implies the plasticity of the lower crust.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42004041,42288201,and 91958209)。
文摘A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover.
基金State Key Basic Research Development and Programming Project (G199804070201) State Natural Science Foundation (40074008).
文摘In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.
文摘s Western Yunnan is located at the boundary of collision or underthrusting zone of Eurasian plate and is influenced by many times tectonic movements. With very complex geological environment and tectonic background, it is one of the seismically active areas. In the paper, the teleseismic records were selected from 16 national, local and mo-bile stations, including 4 very-wide-band mobile stations of PASSCAL. And nearly 2 000 receiver functions were extracted. Two measuring lines are 650 km and 450 km, respectively and across some major tectonic units in Western Yunnan. It is indicated that Nujiang might be a seam characterized by underthrusting. The western and eastern boundaries of Sichuan-Yunnan rhombus block, i.e., Honghe and Xiaojiang faults, might be an erection seam or collision belt. Panxi tectonic zone still has the characteristics of continental rift valley, that is, the surface is hollow and the upper mantle is upwarping. The tectonic situation in Western Yunnan is of certain regulation with the interlacing distribution of orogenic zone and seam. The crustal thickness decreases gradually from the north to the south and the S wave velocity is globally lower here.
基金supported by a National Natural Science Foundation of China (Grant No. 41374097)China National Special Fund for Earthquake Scientific Research in Public Interest (Grant No. 201008001)
文摘We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at -25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LYZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evi- dence, it is indicated that rock strength is high and defor- mation is weak in this area, which is why the level of seismicity is quite low. The profile at ~ 23~N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.
基金supported by the National Natural Science Foundation of China(Grant Nos.41774102,41804062 and 41804057)the Special Funds for Basic Scientific Research Business Fees of Institute of Geophysics,China Earthquake Administration(Grant Nos.DQJB20K41,DQJB16A03)。
文摘Ordos Block has undergone rapid uplift,and a series of rift basins have been formed around the block since the Cenozoic,but the formation mechanisms remain controversial.A high-resolution 3 D velocity structure of crust and mantle is important for understanding the lithospheric deformation and deep dynamic process.A here we present a 3 D S-wave velocity structure of the crust and upper mantle in the Ordos Block and surrounding regions by joint inversion of receiver functions and surface wave data from a dense broadband seismic deployment.The lithosphere of the Ordos Block exhibits an obvious highvelocity anomaly.In the east and north of the Ordos and the southwestern part of the Tibetan Plateau,obvious low-velocity anomalies are detected in the upper mantle and extend into the Ordos.The lithosphere of the Ordos Block is thick in the center and thin at the edge,while the crust is relatively thin in the center and thick in the southwest and northeast.The crustal thickness of the tensional basin in the north is greater than that in the central Ordos.We suggest that the outward expansion of the mantle thermal materials in eastern Tibet and the upper mantle thermal upwelling in the eastern part of the North China Craton lead to the non-uniform lithospheric thinning,temperature rise and density reduction of the Ordos Block.The additional buoyancy and thermodynamic effects provided by them contributed to the continuous uplift of the Ordos Block since the Cenozoic.Influenced by the extrusion of Tibetan Plateau,the crustal thickening and rapid uplift occur in the southwestern and northern parts of the Ordos Block.The lithospheric structures of the Alxa and Ordos Blocks are different,and they may belong to different independent blocks before the Mesozoic.
文摘Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inversion approaches. The rotated correction function is applied to analyzing high quality SeS records from five earthquakes at distance of 25°-35° to obtain shear wave splitting parameters of the lithosphere. The result from the deepest earthquake among the five events indicates that the polarization of the fast shear wave is N94°E, which means the direction of extensional stress or the moving of the upper mantle mass in Xisha Islands is nearly west to east and confirms that the crust in this region is a transitional one and the driving force beneath the crust is from the moving mass consistent with the Eurasian plate. The anisotropy effective thickness is estimated about 100 km based on the time delay of 1.3 s between the fast and slow shear waves. The receiver function is applied to analyzing high quality P wave records from nine earthquakes at distance of 20°- 60° to obtain the vertical distribution pattern of shear wave velocity beneath the station. The result indicates that the crust could be divided into three layers: the uppermost crust (5 km above) is a velocity gradient zone consisting of several small layers, where the shear wave velocity increases from 1.5 to 3.5 km/s gradually; the 5 - 16 km depth interval also consiss of several small layers of which the mean velocity is about 3.8 km/s; and the lower crust ( 16.0 - 26. 5 km) is an obvious low velocity layer with a velocity of about 3.6 km/s. The buried depth of the Moho discontinuity is 26.5 kin, the mean velocity of the layers beneath the Moho is about 4.7 km/s and there is an obvious low velocity layer just beneath the Moho. Moreover, analysis of the arrival time of converted waves and the swinging variation of velocity around the initial model suggests that smaller layers in the model maybe are not reliable but the low velocity layer between 16 and 26.5 km maybe is the real one that implies the plasticity of the lower crust.