A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An...A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An LVOP/LaPO_(4)/CePO_(4)composite cathode material was successfully synthesized and results show that La and Ce co-modification noticeably improves the electrochemical performance by enhancing the high voltage capacity upon cycling,which indicates contributions from the good ionic conductors LaPO_(4)and CePO_(4).The simultaneous La and Ce modification improves the high voltage performance significantly with an increase of 50%in high voltage capacity after 20 cycles compared to pure LVOP.It also shows stabilized cycling perfo rmance with 91%capacity rete ntion after 50 cycles at 0.1 C rate,along with high-rate capability with a capacity of 83.1 mAh/g compared to the pristine sample showing the capacity of 51.6 mAh/g at a high rate of 5C.This can be attributed to the good conductivity of LaPO_(4)and CePO_(4).In addition,the LVOP/LaPO_(4)/CePO_(4)composite and the pristine LVOP give a charge transfer resistance of-105 and-212Ω,respectively,showing much lower impedance due to a combination of La and Ce addition.展开更多
To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiV04 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition a...To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiV04 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and Ce02 crystalline phases. The XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in Ce02 and dispersed on the surface of BiV04 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure Ce02 and pure BiV04. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5 wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment.展开更多
基金the Anhui Natural Science Foundation(1908085ME151,KJ2020A0263)China Po stdoctoral Science Foundation(2020M673404)+2 种基金Anhui Province High-end Talent Grant(DT18100044)the National Level Foreign Expert Introduction Plan(G20190219004)the National Natural Science Foundation of China(52207246)。
文摘A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An LVOP/LaPO_(4)/CePO_(4)composite cathode material was successfully synthesized and results show that La and Ce co-modification noticeably improves the electrochemical performance by enhancing the high voltage capacity upon cycling,which indicates contributions from the good ionic conductors LaPO_(4)and CePO_(4).The simultaneous La and Ce modification improves the high voltage performance significantly with an increase of 50%in high voltage capacity after 20 cycles compared to pure LVOP.It also shows stabilized cycling perfo rmance with 91%capacity rete ntion after 50 cycles at 0.1 C rate,along with high-rate capability with a capacity of 83.1 mAh/g compared to the pristine sample showing the capacity of 51.6 mAh/g at a high rate of 5C.This can be attributed to the good conductivity of LaPO_(4)and CePO_(4).In addition,the LVOP/LaPO_(4)/CePO_(4)composite and the pristine LVOP give a charge transfer resistance of-105 and-212Ω,respectively,showing much lower impedance due to a combination of La and Ce addition.
基金financial support from the Natural Science Foundation of China (No.51008154)the China Postdoctoral Science Foundation funded project (No.2012M511254)the Natural Science Research Project of Jiangsu Province's Education Department (No.12KJD610004)
文摘To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiV04 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and Ce02 crystalline phases. The XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in Ce02 and dispersed on the surface of BiV04 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure Ce02 and pure BiV04. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5 wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment.