期刊文献+
共找到701篇文章
< 1 2 36 >
每页显示 20 50 100
基于调频信号自适应分解的电池储能辅助二次调频控制策略 被引量:1
1
作者 刘鑫屏 刘磊 《动力工程学报》 CAS CSCD 北大核心 2024年第4期590-598,631,共10页
以清洁能源发电为代表的零碳机组大规模并入电网,其间歇性和不确定性带来的频率波动愈发凸显。针对电池储能辅助火电机组调频灵活性不足、荷电状态维持效果不理想的问题,提出一种基于调频信号自适应分解的储能辅助二次调频控制策略。首... 以清洁能源发电为代表的零碳机组大规模并入电网,其间歇性和不确定性带来的频率波动愈发凸显。针对电池储能辅助火电机组调频灵活性不足、荷电状态维持效果不理想的问题,提出一种基于调频信号自适应分解的储能辅助二次调频控制策略。首先,综合灵敏度、储能荷电状态、频率偏差状态3个因素,给出区域调节需求信号和区域控制误差信号的切换时机判据;计及火电机组爬坡率限制和储能荷电状态限制,提出自适应调频信号分解策略,构建回报增益与荷电状态之间的规律并将其作为调节参考值,利用频率偏差对参考值进行修正,最后通过状态一致性检测模块判断回报增益的输出,以实现2种调频资源的优势互补。通过单区域系统频率响应模型仿真,验证了本文策略的有效性。结果表明:本文策略能够提高系统的灵活性,使各调频资源形成互补关系。 展开更多
关键词 调频 储能电池 信号分解 控制策略
下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:2
2
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 超短期负荷 负荷预测 分解 双向门控循环单元
下载PDF
基于二次分解策略和BiLSTM的短期碳排放预测模型设计
3
作者 张克英 孟拓宁 +1 位作者 刘人境 燕欣宇 《电子设计工程》 2024年第17期6-10,共5页
针对现有短期碳排放预测模型残余噪声大、忽略全局信息的特性导致预测精度不高的问题,提出一种基于二次分解策略和双向长短期记忆神经网络(BiLSTM)的新的短期碳排放预测模型。利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)方法... 针对现有短期碳排放预测模型残余噪声大、忽略全局信息的特性导致预测精度不高的问题,提出一种基于二次分解策略和双向长短期记忆神经网络(BiLSTM)的新的短期碳排放预测模型。利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)方法和二次分解思想,将原始时间序列分解为多个本征模态函数(imfs);利用鲸鱼优化算法(WOA)优化的双向长短期记忆神经网络(BiLSTM)对所有函数序列进行预测,并将每个函数序列的预测值累加得到最终结果。实验结果显示,该文提出模型的R2达到0.999,MAPE和RMSE分别为1.3×10-3和97.4,优于其他对比模型,有效降低了预测误差。 展开更多
关键词 短期碳排放预测 分解策略 BiLSTM ICEEMDAN分解 鲸鱼算法
下载PDF
基于二次分解的不同太阳辐射下光伏功率预测
4
作者 王德文 焦天媛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期360-368,共9页
考虑不同太阳辐射对光伏功率的影响,提出一种基于二次分解和改进粒子群算法的光伏功率预测模型。通过Spearman和Kendall对影响光伏功率的各气象因素进行相关性分析,发现总倾斜辐射、总水平辐射、漫射倾斜辐射、漫射水平辐射与光伏功率... 考虑不同太阳辐射对光伏功率的影响,提出一种基于二次分解和改进粒子群算法的光伏功率预测模型。通过Spearman和Kendall对影响光伏功率的各气象因素进行相关性分析,发现总倾斜辐射、总水平辐射、漫射倾斜辐射、漫射水平辐射与光伏功率的相关系数较大。然后利用CLARANS将样本数据按太阳辐射强度分为强辐射、中辐射和弱辐射,针对3类数据采用自适应噪声完备集合经验模态分解(CEEMDAN)对关键气象因素和功率进行二次分解,充分挖掘时序信息并降低数据的不稳定性。提出一种改进粒子群算法(GWCPSO)用于优化卷积神经网络和双向长短期记忆网络的超参数,提高调参效率,最后构建预测模型进行光伏功率预测。分析3种太阳辐射类型下不同分解方法与网络模型的预测误差,结果表明,所的预测模型可有效提高不同太阳辐射下光伏功率的预测精度。 展开更多
关键词 光伏功率预测 分解 粒子群算法 卷积神经网络 双向长短期记忆网络
下载PDF
基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测 被引量:1
5
作者 邱文智 张文煜 +2 位作者 郭振海 赵晶 马可可 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期73-82,共10页
针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些... 针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些子序列分别建立预测模型,最后重构。对变分模态分解的子序列建立基于长短时记忆网络的深度学习模型预测,而残差序列进行二次分解后的子序列建立乌鸦搜索算法优化的组合预测模型预测。最后,对子序列进行重构并得到最终的预测结果。使用实际的风速观测资料开展模拟实验,结果表明:在3个风电场中,所提模型与其他模型相比平均相对误差分别提升了30.07%、37.56%和37.40%,验证了混合模型在超短期风速预测中的有效性和稳定性,以及在不同数据集上的泛化性能。 展开更多
关键词 风速 预测 长短时记忆 分解 乌鸦搜索算法 组合预测模型
下载PDF
基于聚合二次模态分解及Informer的短期负荷预测 被引量:4
6
作者 石卓见 冉启武 徐福聪 《电网技术》 EI CSCD 北大核心 2024年第6期2574-2583,I0087-I0091,共15页
针对区域级负荷的非平稳性及长序列预测精度低的问题,该文提出了一种基于聚合二次模态分解及Informer的短期负荷预测方法。首先,运用改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive ... 针对区域级负荷的非平稳性及长序列预测精度低的问题,该文提出了一种基于聚合二次模态分解及Informer的短期负荷预测方法。首先,运用改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)对负荷序列进行初步分解,削弱原始序列的随机性与波动性;其次,根据子序列的样本熵计算结果进行聚合,并通过比较不同的聚合方式选出最优重构方案;然后,利用变分模态分解对高复杂度的合作模态函数进行二次分解;充分考虑到电价、气象等因素对负荷的影响,采用随机森林(random forest,RF)算法进行相关性分析,从而为每个子序列构建不同的高耦合度特征矩阵并输入Informer进行建模,并通过其多层次编码及稀疏多头自注意力机制等方式提高对负荷序列的预测效率;最后采用巴塞罗那区域级负荷数据集进行实例验证,结果显示所提框架有效解决了模态分解过程中的模态混叠以及高频分量问题,并且其长序列预测均方根误差相比其他经典深度学习模型最高降低了65.28%。 展开更多
关键词 短期负荷预测 分解 样本熵 聚合方式比较 INFORMER 随机森林算法 长序列预测
下载PDF
基于二次图像分解的红外图像与可见光图像融合
7
作者 马鑫 喻春雨 +1 位作者 童亦新 张俊 《光学精密工程》 EI CAS CSCD 北大核心 2024年第10期1567-1581,共15页
针对红外图像与可见光图像融合中细节丢失严重,红外图像的特征信息未能突出显示以及源图像的语义信息被忽视的问题,提出一种基于二次图像分解的红外图像与可见光图像融合网络(Secondary Image Decomposition For Infrared And Visible I... 针对红外图像与可见光图像融合中细节丢失严重,红外图像的特征信息未能突出显示以及源图像的语义信息被忽视的问题,提出一种基于二次图像分解的红外图像与可见光图像融合网络(Secondary Image Decomposition For Infrared And Visible Image Fusion,SIDFuse)。利用编码器对源图像进行二次分解以提取不同尺度的特征信息,然后利用双元素注意力为不同尺度的特征信息分配权重、引入全局语义支路,再采用像素相加法作为融合策略,最后通过解码器重建融合图像。实验选择FLIR数据集用于训练,采用TNO和RoadScene两个数据集进行测试,并选取八种图像融合客观评价参数进行实验对比分析。由TNO数据集的图像融合实验表明,在信息熵、标准差、空间频率、视觉保真度、平均梯度、差异相关系数、多层级结构相似性、梯度融合性能评价指标上,SIDFuse比基于卷积网络中经典融合算法DenseFuse分别平均提高12.2%,9.0%,90.2%,13.9%,85.1%,16.8%,6.7%,30.7%,比最新的融合网络LRRNet分别平均提高2.5%,5.6%,31.5%,5.4%,25.2%,17.9%,7.5%,20.7%。可见本文所提算法融合的图像对比度较高,可以同时更有效保留可见光图像的细节纹理和红外图像的特征信息,在同类方法中占有明显优势。 展开更多
关键词 图像融合 图像分解 全局语义支路 双元素注意力 图像对比度
下载PDF
基于二次分解和BO-BiLSTM组合模型的采煤工作面瓦斯涌出量预测方法研究
8
作者 荣统瑞 侯恩科 夏冰冰 《煤矿安全》 CAS 北大核心 2024年第5期83-92,共10页
为了提高采煤工作面瓦斯涌出量预测精度,提出了一种基于二次分解和BO-BiLSTM组合模型的采煤工作面瓦斯涌出量预测方法。首先运用变分模态分解(VMD)将瓦斯涌出量时序数据进行一次分解,充分利用其分解后的残余分量,并采用自适应噪声完备... 为了提高采煤工作面瓦斯涌出量预测精度,提出了一种基于二次分解和BO-BiLSTM组合模型的采煤工作面瓦斯涌出量预测方法。首先运用变分模态分解(VMD)将瓦斯涌出量时序数据进行一次分解,充分利用其分解后的残余分量,并采用自适应噪声完备经验模态分解(CEEMDAN)进行二次分解;然后将分解后的所有子序列分别输入到贝叶斯算法优化双向长短期记忆网络(BO-BiLSTM)模型中进行瓦斯涌出量预测;最后将各子序列模型输出结果进行叠加得到最终瓦斯涌出量预测结果。以陕西彬长矿区某矿采煤工作面绝对瓦斯涌出量日监测数据为例进行建模和预测分析,结果表明:所提出的瓦斯涌出量组合预测模型具有较高的预测精度,验证了该模型在瓦斯涌出量预测方面的有效性和适用性。 展开更多
关键词 瓦斯涌出量预测 分解 变分模态分解 BO-BiLSTM组合模型 时间序列
下载PDF
二次分解策略的深度学习碳交易价格预测
9
作者 蒋松谕 何贞铭 +1 位作者 周再文 马子云 《科学技术与工程》 北大核心 2024年第18期7928-7939,共12页
随着中国碳排放权交易市场的逐渐完善,碳交易价格的准确预测将有助于构建更加稳定的市场环境,极大减少参与者的风险。针对当前碳交易价格预测难度大及现有的二次分解-集合策略不完善等问题,提出了一种基于变分模态分解(variational mode... 随着中国碳排放权交易市场的逐渐完善,碳交易价格的准确预测将有助于构建更加稳定的市场环境,极大减少参与者的风险。针对当前碳交易价格预测难度大及现有的二次分解-集合策略不完善等问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和经验小波变化(empirical wavelet transform,EWT)的二次分解预测策略,其中分别采用中心频率(central frequency,CF)和Lempel-Ziv复杂度计算作为分解层数的确定依据,样本熵(sample entropy,SE)作为第二次分解输入序列的重构依据,使用长短期记忆网络(long short-term memory,LSTM)和时序卷积网络(temporal convolutional network,TCN)作为预测模型,并结合海洋捕食者算法(marine predator algorithm,MPA)对模型进行参数优化。实验结果表明,V-LSTM-E-LSTM模型和V-TCN-E-TCN模型不仅在湖北碳交易价格的短期和长期预测中获得了最好的效果,而且在其他4个区域碳排放权交易市场也获得了较高的精度。但对于成立时间较短的全国碳排放权交易市场,V-TCN-E-TCN模型在短期预测中表现更佳,长期预测中效果更好的是V-TCN-E-LSTM模型。 展开更多
关键词 碳交易价格 分解 时间序列 预测
下载PDF
基于二次分解平抑风电波动的混合储能系统容量配置
10
作者 刘扬波 张熙 +3 位作者 康龙云 刘林 朱春生 黄晟 《电力系统及其自动化学报》 CSCD 北大核心 2024年第9期61-69,共9页
针对风电并网功率波动问题,提出基于二次分解的混合储能系统容量优化配置方案。首先,根据风电并网功率波动限值,对风电功率进行经验模态分解,并重构为并网参考功率和混合储能系统参考功率,以实现风功率整体平抑;其次,考虑到经验模态分... 针对风电并网功率波动问题,提出基于二次分解的混合储能系统容量优化配置方案。首先,根据风电并网功率波动限值,对风电功率进行经验模态分解,并重构为并网参考功率和混合储能系统参考功率,以实现风功率整体平抑;其次,考虑到经验模态分解算法出现的模态混叠、端点效应加剧等问题,提出基于北方苍鹰优化-变分模态分解算法的混合储能系统内部功率分配策略;最后,建立平抑风电出力波动的混合储能容量优化配置模型,并基于K-均值聚类得到的典型日数据对建立的模型进行求解。算例分析表明,所提策略的优化配置方案能够有效平抑风电功率波动,满足风电并网功率波动的要求,减少混合储能系统成本。 展开更多
关键词 风电功率波动 分解 北方苍鹰优化算法 K-均值
下载PDF
基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测
11
作者 马志侠 张林鍹 +3 位作者 巴音塔娜 谢明浩 张盼盼 王馨 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期429-435,共7页
为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据... 为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据进行分解。引入麻雀搜索算法(SSA)对变分模态分解(VMD)的分解数量与惩罚因子进行优化,使VMD具有自适应性。将ICEEMDAN分解得到的高频分量I_(1)用SSA-VMD进行第二次分解,降低序列不平稳度。同时,构建包含2层池化层的CNN网络进行特征提取与BiLSTM网络的超短期预测模型,最终的风电功率即为各子序列预测结果之和。通过算例分析进行实验表明,所提风电功率预测方法的预测精度优于其他模型,验证了预测模型的优越性。 展开更多
关键词 卷积神经网络 长短期记忆网络 变分模态分解 风电功率预测 模态分解 麻雀搜索算法
下载PDF
基于二次模态分解和深度学习的大坝变形预测模型
12
作者 刘相杰 刘小生 张龙威 《水利水电科技进展》 CSCD 北大核心 2024年第3期101-106,共6页
为充分提取大坝变形监测数据的非线性和非平稳性特征,深度挖掘其前后信息的拓扑关系,有效提高预测精度,提出了一种基于二次模态分解和蜣螂优化算法的双向长短期记忆神经网络大坝变形预测模型。该模型引入融合自适应噪声完备集成经验模... 为充分提取大坝变形监测数据的非线性和非平稳性特征,深度挖掘其前后信息的拓扑关系,有效提高预测精度,提出了一种基于二次模态分解和蜣螂优化算法的双向长短期记忆神经网络大坝变形预测模型。该模型引入融合自适应噪声完备集成经验模态分解和变分模态分解的二次模态分解对数据进行预处理,有效降低高频非平稳性分量对预测精度的不利影响,并利用蜣螂优化算法对双向长短期记忆神经网络进行超参数寻优以深度挖掘大坝变形数据的有效信息。以某水电站大坝为例,将该模型预测结果与多种常用模型的预测结果进行对比分析,结果表明该模型可有效挖掘大坝变形数据复杂的非线性特征,其预测精度明显优于对比模型,验证了该模型在大坝变形预测中的可行性与优越性。 展开更多
关键词 大坝变形预测 模态分解 蜣螂优化算法 双向长短期记忆神经网络
下载PDF
基于二次分解和改进沙猫群优化算法的空气质量预测
13
作者 朱菊香 张诗云 +2 位作者 张涛 孙君峰 张赵良 《国外电子测量技术》 2024年第5期190-200,共11页
准确预测空气质量对人们的日常生活具有重要意义,提出了一种二次分解和改进沙猫群算法(improved sand cat swarm optimization,ISCSO)优化长短期记忆网络(long short-term memory,LSTM)相结合的预测模型。首先,利用完全自适应噪声集合... 准确预测空气质量对人们的日常生活具有重要意义,提出了一种二次分解和改进沙猫群算法(improved sand cat swarm optimization,ISCSO)优化长短期记忆网络(long short-term memory,LSTM)相结合的预测模型。首先,利用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)算法将PM 2.5数据分解为多个子序列,对预测效果不满意的重构序列使用变分模态分解(variational mode decomposition,VMD)方法进行二次分解;其次,引入Cubic混沌、螺旋搜索策略和麻雀警戒机制改进沙猫群算法,有效提高了算法的全局搜索性能和收敛速度;最后,采用改进的沙猫群算法对LSTM模型参数进行优化,将各个子序列导入ISCSO-LSTM模型预测并叠加得到最终预测结果。实验结果表明,CEEMDAN-VMD-ISCSO-LSTM组合模型具有较低的预测误差,相比CEEMDAN-VMD-LSTM和CEEMDAN-VMD-SCSO-LSTM模型,该模型在均方根误差方面分别降低了2.21和1.04μg/m^(3),在拟合度方面分别提高了4.9%和2.1%。 展开更多
关键词 空气质量预测 分解 改进沙猫群算法 长短期记忆网络
下载PDF
基于二次分解因果分析和深度学习的短期风电功率预测 被引量:1
14
作者 梅晓辉 李国翊 +1 位作者 李铁良 关猛 《河北电力技术》 2024年第1期77-83,共7页
为实现精准的风电功率预测,提出了一种基于二次分解因果分析和深度学习的风电功率预测模型。首先,通过完备集成经验模态分解算法对风电功率和风速序列进行一次分解,并采用经验小波变换算法对风电功率和风速序列的高频分量进行二次分解,... 为实现精准的风电功率预测,提出了一种基于二次分解因果分析和深度学习的风电功率预测模型。首先,通过完备集成经验模态分解算法对风电功率和风速序列进行一次分解,并采用经验小波变换算法对风电功率和风速序列的高频分量进行二次分解,以降低原始序列的复杂程度。其次,通过Granger因果关系检验方法对各风速分量与风电功率分量进行因果分析,以此实现风电功率各分量的输入变量选择。最后,利用耦合注意力机制的双向门控循环单元对风电功率分量进行预测,并集成得到最终的风电功率预测结果。通过风电厂实际运行数据进行试验,并与多个典型模型进行比较,结果表明所提模型具有较高的预测精度,其决定系数达到了0.98,能够实现较精准的风电功率预测。 展开更多
关键词 风电功率 分解 GRANGER因果关系检验 双向门控循环单元 注意力机制
下载PDF
基于二次分解和支持向量机的月径流预测方法
15
作者 甘容 马超鑫 +3 位作者 高勇 郭林 侯晓丽 路学永 《郑州大学学报(工学版)》 CAS 北大核心 2024年第6期32-39,共8页
针对径流序列的非线性和非平稳性特征,提出了一种基于加权回归的季节趋势分解(STL)和变分模态分解(VMD)组合的二次分解,结合支持向量机(SVM)的月径流预测模型STL-VMD-SVM。该模型利用STL将原始径流序列分解为不同频率的季节项、趋势项... 针对径流序列的非线性和非平稳性特征,提出了一种基于加权回归的季节趋势分解(STL)和变分模态分解(VMD)组合的二次分解,结合支持向量机(SVM)的月径流预测模型STL-VMD-SVM。该模型利用STL将原始径流序列分解为不同频率的季节项、趋势项和残差项,并通过VMD将残差项分解为IMF s。建立SVM模型预测季节项、趋势项和IMF s,所有IMF s的预测值之和为残差项的预测值,季节项、趋势项和残差项之积为原始径流序列的最终预测值。基于伊洛河流域黑石关站及黄河干流高村站的月径流时间序列进行了实例应用及普适性评价,并与BP神经网络模型和长短期记忆神经网络模型(LSTM)进行对比。结果表明:对于伊洛河黑石关站径流预测,所提模型验证期的NSE、MAPE、RMSE、R分别为0.977,13.705%,0.327,0.991,其预测精度均优于单一模型和一次分解模型,STL-VMD二次分解可以有效提高模型预测精度;在黄河干流高村站径流预测中验证期的NSE、MAPE、RMSE、R分别为0.979,8.509%,3.263,0.989,也达到了很好的预测效果。 展开更多
关键词 月径流预测 分解 STL VMD SVM 神经网络
下载PDF
基于二次分解和误差修正的中国碳交易价格预测
16
作者 何志超 黄建华 《科技管理研究》 CSSCI 2024年第13期200-214,共15页
碳交易价格受到宏观经济、能源政策等多种因素的影响,表现出强波动性、非线性等特征,给碳交易价格的准确预测带来巨大困难。针对这一问题,基于二次分解和误差修正策略构建一种碳交易价格预测模型:首先,使用浣熊优化算法优化的变分模态... 碳交易价格受到宏观经济、能源政策等多种因素的影响,表现出强波动性、非线性等特征,给碳交易价格的准确预测带来巨大困难。针对这一问题,基于二次分解和误差修正策略构建一种碳交易价格预测模型:首先,使用浣熊优化算法优化的变分模态分解方法分解碳价序列,降低原始序列的复杂度;其次,使用经验小波变换对变分模态分解产生的残差序列进行二次分解,充分提取残差序列中的有效信息;然后,使用浣熊优化算法优化的极限学习机对各分量进行预测,获得初始预测结果和误差序列;最后,使用基本和浣熊优化算法优化的极限学习机对误差序列进行分解和预测,并利用误差预测结果对初始预测结果进行修正,得到最终预测结果。选取深圳、湖北和福建3个碳交易市场的碳价数据进行实证验证,结果表明,所提出的模型相比于其他对照模型具有更优异的预测精度和稳定性,有效提高碳价预测的准确性。 展开更多
关键词 碳交易价格 分解 浣熊优化算法 极限学习机 误差修正
下载PDF
基于二次模态分解的LSTM短期电力负荷预测
17
作者 张淑娴 江文韬 +3 位作者 陈玉花 杨晓东 金丰 白莉 《科学技术与工程》 北大核心 2024年第7期2759-2766,共8页
为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系。提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network, LSTM)用于电力负荷的短期预测。所提算法先对原始... 为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系。提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network, LSTM)用于电力负荷的短期预测。所提算法先对原始负荷序列进行自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),再将CEEMDAN分解后分量中的强非平稳分量进行变分模态分解(variational mode decomposition, VMD),同时用中心频率法对VMD分解个数进行优化,然后将两次分解后得到的负荷子序列送入LSTM中进行预测,并将所得分量预测结果进行叠加。结果表明,本文所提方法对短期电力负荷预测结果精度和模型性能都有较大提升。 展开更多
关键词 短期负荷预测 模态分解 自适应噪声的完全集合经验模态分解(CEEMDAN) 变分模态分解(VMD) 长短期记忆网络(LSTM)
下载PDF
基于改进二次模态分解和BiLSTM-Attention的短期电力负荷预测
18
作者 梅锦超 张鹏宇 +1 位作者 程斌 吴永华 《电工材料》 CAS 2024年第2期100-104,共5页
针对短期电力负荷预测中变分模态分解的参数选择缺乏有效优化,采用长短期记忆神经网络预测时存在长期信息弱化等问题,提出了一种基于改进二次模态分解,并利用注意力机制重新分配神经网络中输入权重的预测方法。首先对传统二次模态分解... 针对短期电力负荷预测中变分模态分解的参数选择缺乏有效优化,采用长短期记忆神经网络预测时存在长期信息弱化等问题,提出了一种基于改进二次模态分解,并利用注意力机制重新分配神经网络中输入权重的预测方法。首先对传统二次模态分解中的分解参数采用分解损失的评价标准进行优化。然后在特征选择的基础上,将注意力机制和正反向记忆层添加到长短期神经网络中,针对各个模态分量分别进行训练预测。最后将子序列预测结果重构输出。算例分析表明,所提方法解决了预测中变分模态分解的参数选择及长期信息的弱化等问题,有效减小了分解损失,具有更高的预测精度。 展开更多
关键词 模态分解 分解损失 注意力机制 双向长短期神经网络 短期电力负荷预测
下载PDF
基于小波包分解的二次电流回路短接故障自动诊断方法
19
作者 周开运 高泓 杨小东 《自动化应用》 2024年第13期263-265,共3页
当前二次电流回路短接故障自动诊断节点多设定为独立结构,故障诊断识别速度慢,导致小波包分解系数比增大,为此,提出基于小波包分解的二次电流回路短接故障自动诊断方法。采用多目标的方式采集进行异常数据。采用重叠辅助核验的方式实现... 当前二次电流回路短接故障自动诊断节点多设定为独立结构,故障诊断识别速度慢,导致小波包分解系数比增大,为此,提出基于小波包分解的二次电流回路短接故障自动诊断方法。采用多目标的方式采集进行异常数据。采用重叠辅助核验的方式实现故障诊断处理。结果表明,所设计的小波包分解二次电流回路短接故障自动诊断测试组最终得出的小波包系数变化比均控制在1.5以下,说明二次电流回路短接故障自动诊断效果更高效,具有实际的应用价值。 展开更多
关键词 小波包分解 电流 电流回路 短接故障 自动诊断
下载PDF
基于二次分解和GRU-attention的时间序列预测研究 被引量:2
20
作者 高凯悦 牟莉 《国外电子测量技术》 北大核心 2023年第2期80-87,共8页
针对时间序列规律难以捕捉且具有高度非平稳性特征导致的预测精度较低问题,提出了一种基于二次分解和注意力机制优化门控循环单元(GRU-attention)的时间序列预测模型。首先利用完全集合经验模态分解(complete ensemble empirical mode d... 针对时间序列规律难以捕捉且具有高度非平稳性特征导致的预测精度较低问题,提出了一种基于二次分解和注意力机制优化门控循环单元(GRU-attention)的时间序列预测模型。首先利用完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将时间序列分解为若干个特征互异的模态分量,并依据样本熵量化各分量复杂度。其次采用变分模态分解(variational modal decomposition,VMD)弱化高熵值分量的非平稳性特征。接着使用注意力机制优化GRU预测模型。最后对各分量建立GRU-attention模型进行预测,将各分量预测结果叠加获得最终结果。通过实验分析证明,所提出的模型与其他模型相比能够较好的捕捉序列的复杂规律、降低序列的非平稳性并且具有较高的预测性能,其平均绝对百分比误差达到了2.9%,决定系数达到了0.891。 展开更多
关键词 ceemdan-vmd二次分解 样本熵 GRU神经网络 Attention机制 时间序列预测
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部