针对海上设施的安全防护问题,提出了一种网-桁架式海上拦截装置,目的是在有效拦截来袭小艇撞击的同时尽量降低对拦截装置本身的损伤.为验证这一装置的有效性,基于显式动力学和欧拉-拉格朗日耦合方法对拦截装置拦截小艇过程进行数值模拟...针对海上设施的安全防护问题,提出了一种网-桁架式海上拦截装置,目的是在有效拦截来袭小艇撞击的同时尽量降低对拦截装置本身的损伤.为验证这一装置的有效性,基于显式动力学和欧拉-拉格朗日耦合方法对拦截装置拦截小艇过程进行数值模拟,设定小艇垂直撞击支撑柱、支撑柱间隙和45°撞击支撑柱、支撑柱间隙4种工况,每种工况包含10、20、30 m/s 3种速度.通过对这12组仿真的碰撞力、能量以及破损状态分析,全方位分析了该装置的防撞性能和对小艇的拦截效果.所有工况下该装置都能完成对小艇的拦截,说明这种装置具有优秀的拦截效果.展开更多
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
文摘针对海上设施的安全防护问题,提出了一种网-桁架式海上拦截装置,目的是在有效拦截来袭小艇撞击的同时尽量降低对拦截装置本身的损伤.为验证这一装置的有效性,基于显式动力学和欧拉-拉格朗日耦合方法对拦截装置拦截小艇过程进行数值模拟,设定小艇垂直撞击支撑柱、支撑柱间隙和45°撞击支撑柱、支撑柱间隙4种工况,每种工况包含10、20、30 m/s 3种速度.通过对这12组仿真的碰撞力、能量以及破损状态分析,全方位分析了该装置的防撞性能和对小艇的拦截效果.所有工况下该装置都能完成对小艇的拦截,说明这种装置具有优秀的拦截效果.
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.