2-D velocity structure and tectonics of the crust and upper mantle is revealed by inversion of seismic refraction and wide-angle reflection traveltimes acquired along the profile L1 in the Changbaishan-Tianchi volcani...2-D velocity structure and tectonics of the crust and upper mantle is revealed by inversion of seismic refraction and wide-angle reflection traveltimes acquired along the profile L1 in the Changbaishan-Tianchi volcanic region. It is used in this study that seismic traveltime inversion for simultaneous determination of 2-D velocity and interface structure of the crust and upper mantle. The result shows that, under Changbaishan-Tianchi crater, there exists a low-velocity body in the shape of an inverted triangle, and the crustal reflecting boundaries and Moho all become lower by a varying margin of 2-6 km, forming a crustal root which is assumed to be the Changbaishan-Tianchi volcanic system. Finally, we make a comparison between our 2-D velocity model and the result from the studies by using trial-and-error forward modeling with SEIS83.展开更多
In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume a...In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.展开更多
High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according t...High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.展开更多
基金Key Project (95-11-02-01) from China Seismological Bureau.Contribution No. RCEG200129, Research Center of Exploration Geophysi
文摘2-D velocity structure and tectonics of the crust and upper mantle is revealed by inversion of seismic refraction and wide-angle reflection traveltimes acquired along the profile L1 in the Changbaishan-Tianchi volcanic region. It is used in this study that seismic traveltime inversion for simultaneous determination of 2-D velocity and interface structure of the crust and upper mantle. The result shows that, under Changbaishan-Tianchi crater, there exists a low-velocity body in the shape of an inverted triangle, and the crustal reflecting boundaries and Moho all become lower by a varying margin of 2-6 km, forming a crustal root which is assumed to be the Changbaishan-Tianchi volcanic system. Finally, we make a comparison between our 2-D velocity model and the result from the studies by using trial-and-error forward modeling with SEIS83.
基金National Natural Science Foundation of China (40074010).
文摘In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.
文摘High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.