We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and A- transitions. In principle, the A-A proce...We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and A- transitions. In principle, the A-A process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN→ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN→ππ, KK bounds.展开更多
基金supported in part by the MIUR research grant “Theoretical Astroparticle Physics” PRIN 2012CPPYP7partly supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD”+2 种基金MOST,Taiwan,(104-2112-M-001-022)from April 2017Supported by MEPhI Academic Excellence Project(contract 02.03.21.0005,27.08.2013)supported by the Ministry of Education and Science of Russian Federation,project 3.472.2014/K and grant RFBR 14-22-03048
文摘We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and A- transitions. In principle, the A-A process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN→ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20-100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50-90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN→ππ, KK bounds.