期刊文献+
共找到171,577篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation on Ceramic/Metal Armours Impacted by Deformable Projectile
1
作者 Zhang Xiaoqing Yao Xiaohu Yang Guitong 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第z2期142-146,共5页
Numerical simulation for the dynamic response of ceramic/metal armours impacted by deformable projectile is carried out with LS-DYNA3D.The simulated penetration processes are shown. The mushrooming of the projectile i... Numerical simulation for the dynamic response of ceramic/metal armours impacted by deformable projectile is carried out with LS-DYNA3D.The simulated penetration processes are shown. The mushrooming of the projectile is displayed. A distinct conoid shaped zone of fragmented ceramic is observed. A significant bending of the backing plate is revealed. Simulation results match fairly well with the experimental values and the theoretical analysis results. The accuracy of the numerical simulation is validated. 展开更多
关键词 deformable PROJECTILE ceramic/metal armours NUMERICAL SIMULATION
下载PDF
Direct Comparison between Tensile Strength and Flexural Strength of Ceramic/Metal Brazing Joint
2
作者 冼爱平 斯重遥 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第1期30-34,共5页
A design of the sandwich joint,steel/ ceramic/steel,was made for direct comparison be- tween tensile and flexural strength of ceramic/metal joint.The flexural strength is about twice as high as the tensile strength fo... A design of the sandwich joint,steel/ ceramic/steel,was made for direct comparison be- tween tensile and flexural strength of ceramic/metal joint.The flexural strength is about twice as high as the tensile strength for the same joint.The results also showed that the flexural test is more excellent than tensile test for joint with a high interracial bond strength. 展开更多
关键词 ceramic/metal brazing joint BONDING STRENGTH
下载PDF
ANALYTICAL MODEL OF CERAMIC/METAL ARMOR IMPACTED BY DEFORMABLE PROJECTILE
3
作者 张晓晴 杨桂通 黄小清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期287-294,共8页
A new analytical model was established to describe the complex behavior of ceramic/metal armor under impact of deformable projectile by assuming some hypotheses. Three aspects were taken into account: the mushrooming... A new analytical model was established to describe the complex behavior of ceramic/metal armor under impact of deformable projectile by assuming some hypotheses. Three aspects were taken into account: the mushrooming deformation of the projectile, the fragment of ceramic tile and the formation and change of ceramic conoid and the deformation of the metal backup plate. Solving the set of equations, all the variables were obtained for the different impact velocities: the extent and particle velocity in rigid zone; the extent, cross-section area and particle velocity in plastic zone; the velocity and depth of penetration of projectile to the target; the reduction in volume and compressive strength of the fractured ceramic conoid; the displacement and movement velocity of the effective zone of backup plate. Agreement observed among analytical result, numerical simulation and experimental result confirms the validity of the model, suggesting the model developed can be a useful tool for ceramic/metal armor design. 展开更多
关键词 ceramic/metal armor deformable projectile analytical model
下载PDF
Influence of Boundary Conditions on Ceramic/Metal Plates under Ballistic Loads
4
作者 Nadda Jongpairojcosit 《Journal of Materials Science and Chemical Engineering》 2015年第7期97-101,共5页
Ceramic/metal plate is one of the most widely used light weight armors, especially to protect armor piercing (AP) bullet. Experimental investigation of projectile penetration mechanism into the ceramic/metal plate req... Ceramic/metal plate is one of the most widely used light weight armors, especially to protect armor piercing (AP) bullet. Experimental investigation of projectile penetration mechanism into the ceramic/metal plate requires costly sensitive equipment to capture impact phenomenon that completes within microseconds. Alternatively, the impact mechanism can be efficiently investigated using numerical simulations. Among recent investigations on the protective capability of this ceramic/metal plates, few only discussed the influence of the boundary effects on the ballistic protection. This study thus aims to examine the effect of boundary conditions by changing shapes of the plate, border constraints and bounded materials in numerical simulation. Material models of the ceramic and the backing metal plate made of aluminium 2017-T6 are selected. The 7.62 AP projectile’s core was modeled by a solid cylinder. The initial projectile velocity was 940 m/s. The plates are represented by either a square or a hexagonal tile. The edges of the plates were fixed or enclosed by a soft epoxy. To investigate the effect of backing plate, a small gap was introduced between some of the ceramic and aluminum interfaces. The results showed that the hexagonal tiles reduce the deformation of the backing plate. The plates bounded by the epoxy exhibit inferior performances compared to the fixed plates. Finally, the small gap between the ceramic and the aluminum interfaces significantly increases the time to stop the projectile. 展开更多
关键词 ceramic ARMOR BOUNDARY Condition Impact Behavior
下载PDF
Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries 被引量:1
5
作者 Dongchen Li Xinxin Wang +7 位作者 Qi Guo Xiaole Yu Shangxu Cen Huirong Ma Jingjing Chen Dajian Wang Zhiyong Mao Chenlong Dong 《Carbon Energy》 SCIE CSCD 2023年第2期184-192,共9页
A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis... A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries. 展开更多
关键词 intimate interface contact metallized ceramics Na-Au interlayer solid-state sodium metal battery ultrasound welding
下载PDF
Robust and Tunable Ferroelectricity in Ba/Co Codoped (K_(0.5)Na_(0.5))NbO_(3) Ceramics
6
作者 刘佳讯 查节林 +5 位作者 杨玉龙 吕笑梅 胡雪莉 阎朔 吴子敬 黄凤珍 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期152-160,共9页
The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sa... The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity. 展开更多
关键词 ceramicS FERROELECTRIC treatment
下载PDF
Structural and Luminescent Properties of Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)Green-Emitting Transparent Ceramic Phosphor
7
作者 郝留成 MIAO Xiaojun +4 位作者 LI Kai ZHONG Jianying 涂兵田 YANG Zhangfu 王皓 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期533-540,共8页
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint... A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes. 展开更多
关键词 transparent ceramic phosphor green emission MGALON PHOTOLUMINESCENCE
下载PDF
Preparation and Photostriction Properties of BiFeO_(3)-BaTiO_(3)Ceramics
8
作者 ZHENG Zewei ZHANG Liqiang +3 位作者 CHEN Chen CAO Minghe YI Zhiguo LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1079-1086,共8页
Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric cera... Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices. 展开更多
关键词 ferroelectric ceramics photostrictive effect visible light response
下载PDF
Microstructure Characteristics and Possible Phase Evolution of the Coal Gangue-Steel Slag Ceramics Prepared by the Solid-State Reaction Methods
9
作者 刘文洁 WANG Yang +1 位作者 LI Jingtao 李宝让 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期921-930,共10页
Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios... Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity. 展开更多
关键词 steel slag-coal gangue ceramics SYNTHESIS phase evolution microstructure characteristics
下载PDF
Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells
10
作者 Na Yu Idris Temitope Bello +4 位作者 Xi Chen Tong Liu Zheng Li Yufei Song Meng Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期308-324,共17页
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7... Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage. 展开更多
关键词 Reversible protonic ceramic cells Air electrode Ruddlesden-Popper perovskite HYDRATION Oxygen reduction reaction
下载PDF
High-performance grinding of ceramic matrix composites
11
作者 Jingfei Yin Jiuhua Xu Honghua Su 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期45-55,共11页
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide... Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application. 展开更多
关键词 ceramic matrix composite GRINDING Surfacefinish Subsurface damage Fiber breakage
下载PDF
Microstructure and Oxidation Behavior of ZrB_(2)-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration
12
作者 TAN Min CHEN Xiaowu +5 位作者 YANG Jinshan ZHANG Xiangyu KAN Yanmei ZHOU Haijun XUE Yudong DONG Shaoming 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期955-964,共10页
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to... ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics. 展开更多
关键词 ultra-high temperature ceramic ZRB2-SIC oxidation behavior reactive melt infiltration
下载PDF
Low-firing and temperature stability regulation of tri-rutile MgTa_(2)O_(6)microwave dielectric ceramics
13
作者 Chengzhi Xu Hongyu Yang +5 位作者 Hongcheng Yang Linzhuang Xing Yuan Wang Zhimin Li Enzhu Li Guorui Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1935-1943,共9页
A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this stud... A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃. 展开更多
关键词 MgTa_(2)O_(6) ceramic microwave dielectric characteristics glass
下载PDF
Grindability Evaluation of Ultrasonic Assisted Grinding of Silicon Nitride Ceramic Using Minimum Quantity Lubrication Based SiO_(2)Nanofluid
14
作者 Yusuf Suleiman Dambatta Changhe Li +8 位作者 Mohd Sayuti Ahmed A D Sarhan Min Yang Benkai Li Anxue Chu Mingzheng Liu Yanbin Zhang Zafar Said Zongming Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期115-136,共22页
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ... Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics. 展开更多
关键词 Minimum quantity lubrication(MQL) Ultrasonic assisted grinding(UAG) Eco-friendly lubricants NANOFLUID GRINDING ceramic
下载PDF
Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries 被引量:5
15
作者 Yanxia Su Fei Xu +2 位作者 Xinren Zhang Yuqian Qiu Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期155-189,共35页
Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible pro... Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed. 展开更多
关键词 Composite solid electrolytes Ionic conductivity Interfacial compatibility Ion conduction pathways Li metal batteries
下载PDF
A Hybrid Compensation Scheme for the Input Rate-Dependent Hysteresis of the Piezoelectric Ceramic Actuators
16
作者 DONG Ruili TAN Yonghong +1 位作者 HOU Jiajia ZHENG Bangsheng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期436-446,共11页
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr... A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system. 展开更多
关键词 hybrid control input rate-dependent hysteresis inverse model neural network piezoelectric ceramic actuator
下载PDF
Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells
17
作者 Inhyeok Cho Jiwon Yun +4 位作者 Boseok Seong Junseok Kim Sun Hee Choi Ho-Il Ji Sihyuk Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期1-9,I0001,共10页
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula... PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated. 展开更多
关键词 Protonic ceramic fuel cell Cathode Triple ionic and electronic conductor Hydration property Proton uptake Gibbs free energy
下载PDF
Clay Materials for Ceramics Application from N’Djamena in the Chad Republic: Mineralogical, Physicochemical and Microstructural Characterization
18
作者 Ndjolba Madjihingam Djoda Pagore +3 位作者 Jacques Richard Mache Bebbata Warabi Bertin Pagna Kagonbe Patrick Mountapmbeme Kouotou 《Journal of Materials Science and Chemical Engineering》 2024年第2期31-48,共18页
Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SE... Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SEM. In addition, TGA/DSC were performed to control decomposition/mass loss and show phase transitions respectively of CMs. Geochemical analysis by XRF reveals the following minerals composition: SiO<sub>2</sub> (~57% - 66%), Al<sub>2</sub>O<sub>3 </sub>(~13% - 15%), Fe<sub>2</sub>O<sub>3</sub> (~6% - 10%), TiO<sub>2</sub> (~1% - 2%) were the predominant oxides with a reduced proportion in C1, and (~7%) of fluxing agents (K<sub>2</sub>O, CaO, Na<sub>2</sub>O). Negligible and trace of MgO (~1%) and P<sub>2</sub>O<sub>5</sub> was noted. The mineralogical composition by XRD shows that, C1, C2 and C3 display close mineralogy with: Quartz (~50%), feldspar (~20%) as non-clay minerals, whereas clays minerals were mostly kaolinite (~15%), illite (~5%) and smectite (~10%). FTIR analysis exhibits almost seemingly similar absorption bands characteristic of hydroxyls elongation, OH valence vibration of Kaolinite and stretching vibration of some Metal-Oxygen bond. SEM micrographs of the samples exhibit microstructureformed by inter-aggregates particles with porous cavities. TGA/DSCconfirm the existence of quartz (570˚C to 870˚C), carbonates (600˚C - 760˚C), kaolinite (569˚C - 988˚C), illite (566˚C - 966˚C), MgO (410˚C - 720˚C) and smectite (650˚C - 900˚C). The overall characterization indicates that, these clayey soils exhibit good properties for ceramic application. 展开更多
关键词 Clay Soils Characterization MINERALOGY Physicochemical Properties ceramic Application
下载PDF
Study on Acoustic Emission Characteristics of Deformation Damage Process of Zirconia Ceramics
19
作者 Qingchuan Fu Yushu Lai 《Journal of Materials Science and Chemical Engineering》 2024年第2期61-72,共12页
Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited r... Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals. 展开更多
关键词 Zirconia ceramics Acoustic Emission Monitoring Crack Damage
下载PDF
Progress in Research on Structural Ceramic Materials Toughened by Graphene
20
作者 Wenyu Yao Yalong Zhang 《Expert Review of Chinese Chemical》 2024年第2期37-42,共6页
Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widesp... Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene. 展开更多
关键词 GRAPHENE ceramicS mixing materials SINTERING TOUGHENING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部