Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffra...Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffraction, X-ray fluorescence, Fourier transform Infrared Spectroscopy (FT-IR) and Thermograve-metric analyses. The structures and empirical formula's was identified and found to CeSb4O12?6.19H2O and TiCeSb4O14?12.22H2O, for cero-antiomate and titanium cero-antimonate, respectively. The data obtained from X-ray diffraction was analyzed to define the crystallographic feature of cero-antimonate and titanium cero-antimonate and found both the composites were belong to cubic system with lattice constant 5.15 and 5.149 ?, respectively. The crystallite size and strain of cero-antimonate and titanium cero-antimonate were determined. By using ChemDraw Ultra program the modeling structures of cero-antimonate and titanium cero-antimonate were conducted. Finally, application of the prepared materials for the removal of heavy metals from industrial waste water in terms of capacity measurements was performed.展开更多
文摘Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffraction, X-ray fluorescence, Fourier transform Infrared Spectroscopy (FT-IR) and Thermograve-metric analyses. The structures and empirical formula's was identified and found to CeSb4O12?6.19H2O and TiCeSb4O14?12.22H2O, for cero-antiomate and titanium cero-antimonate, respectively. The data obtained from X-ray diffraction was analyzed to define the crystallographic feature of cero-antimonate and titanium cero-antimonate and found both the composites were belong to cubic system with lattice constant 5.15 and 5.149 ?, respectively. The crystallite size and strain of cero-antimonate and titanium cero-antimonate were determined. By using ChemDraw Ultra program the modeling structures of cero-antimonate and titanium cero-antimonate were conducted. Finally, application of the prepared materials for the removal of heavy metals from industrial waste water in terms of capacity measurements was performed.