CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas m...CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.展开更多
The swarm parametes for c-C4F8/CF4 mixtures, including the density-normalized effective ion- ization coefficient, drift velocity and mean energy were calculated using Monte-Carlo method with the null collision techniq...The swarm parametes for c-C4F8/CF4 mixtures, including the density-normalized effective ion- ization coefficient, drift velocity and mean energy were calculated using Monte-Carlo method with the null collision technique. The overall density-reduced electric field strength could be varied between 150 and 500 Td, while the c-C4F8 content in gas mixtures is varied in the range of 0-100%. The value of the density-normalized effective ionization coefficient shows a strong dependence on the c-C4F8 content, becoming more electronegative as the content of c-C4F8 is increased. The drift velocity of c-C4F8/CF4 mixtures is more affected by CF4. The calculated limiting field strength for c-C4F8/CF4 mixtures is higher than that of SF6/CF4.展开更多
基金supported by National Natural Science Foundation of China(No.51337006)。
文摘CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.
基金the National Natural Science Foundation of China (No. 50777041)
文摘The swarm parametes for c-C4F8/CF4 mixtures, including the density-normalized effective ion- ization coefficient, drift velocity and mean energy were calculated using Monte-Carlo method with the null collision technique. The overall density-reduced electric field strength could be varied between 150 and 500 Td, while the c-C4F8 content in gas mixtures is varied in the range of 0-100%. The value of the density-normalized effective ionization coefficient shows a strong dependence on the c-C4F8 content, becoming more electronegative as the content of c-C4F8 is increased. The drift velocity of c-C4F8/CF4 mixtures is more affected by CF4. The calculated limiting field strength for c-C4F8/CF4 mixtures is higher than that of SF6/CF4.