期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
1
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction Computational fluid dynamics(cfd simulations
下载PDF
CFD-supported optimization of flow distribution in quench tank for heat treatment of A357 alloy large complicated components 被引量:2
2
作者 杨夏炜 朱景川 李文亚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3399-3409,共11页
The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow f... The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components. 展开更多
关键词 A357 alloy flow distribution quench tank computational fluid dynamics(cfd simulation
下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:3
3
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics cfd simulation flotation cell gas-liquid two-phases flow
下载PDF
CFD-based optimization and design of multi-channel inorganic membrane tubes 被引量:6
4
作者 Zhao Yang Jingcai Cheng +1 位作者 Chao Yang Bin Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第10期1375-1385,共11页
As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous in... As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation efficiency of inner channels.An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube.The three-dimensional computational fluid dynamics(CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube.A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied.The relationship between permeation efficiency and channel locations,and the method for increasing the permeation efficiency of inner channels were proposed.Some novel multichannel membrane configurations with more permeate side channels were put forward and evaluated. 展开更多
关键词 Inorganic membrane Multi-channel tube Computational fluid dynamics cfdsimulation Optimization
下载PDF
Analysis of Static Pressure in Area between Back Plate and Cylinder of a Carding Machine with CFD 被引量:2
5
作者 韩贤国 孙鹏子 赵业平 《Journal of Donghua University(English Edition)》 EI CAS 2009年第3期242-246,共5页
To analyze static pressure between back plate and cylinder in an A186 carding machine,a fluid model is established. The model takes into account static pressure of airflow near back plate with the numerical simulation... To analyze static pressure between back plate and cylinder in an A186 carding machine,a fluid model is established. The model takes into account static pressure of airflow near back plate with the numerical simulation method of Computational Fluid Dynamics (CFD) in FLUENT software. The result of the simulation in the model shows that static pressure in this area quickly increases to its maximum then rapidly decreases to a lower fixed value from inlet to outlet along a zone between back plate and cylinder. Both rotating speeds of the cylinder and the taker-in affect static pressure from the inlet to the outlet,of which the cylinder rotating speed has more influence than that of taker-in. Numerical simulations reveal that static pressure on surface of back plate are in good agreement with the former result of experimental analysis. 展开更多
关键词 A186 carding machine FLUENT Computational Fluid Dynamics cfd simulation CYLINDER static pressure back plate
下载PDF
Application of FLUENT on fine-scale simulation of wind field over complex terrain 被引量:2
6
作者 Lei Li LiJie Zhang +3 位作者 Ning Zhang Fei Hu Yin Jiang WeiMei Jiang 《Research in Cold and Arid Regions》 2010年第5期411-418,共8页
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL... The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy. 展开更多
关键词 FLUENT Computational Fluid Dynamics cfd complex terrain wind field fine-scale simulation
下载PDF
CFD simulation on membrane distillation of NaCl solution
7
作者 Zhaoguang XU Yanqiu PAN Yalan YU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2009年第3期293-297,共5页
A computational fluid dynamics(CFD)simu-lation that coupled an established heat and mass transfer model was carried out for the air-gap membrane distillation(AGMD)of NaCl solution to predict mass and heat behaviors of... A computational fluid dynamics(CFD)simu-lation that coupled an established heat and mass transfer model was carried out for the air-gap membrane distillation(AGMD)of NaCl solution to predict mass and heat behaviors of the process.The effects of temperature and flowrate on fluxes were first simulated and compared with available experimental data to verify the approach.The profiles of temperature,temperature polarization factor,and mass flux adjacent to the tubular carbon membrane surface were then examined under different feed Reynolds number in the computational domain.Results show that the temperature polarization phenomena can be reduced,and mass flux can be enhanced with increase in the feed Reynolds number. 展开更多
关键词 membrane distillation computational fluid dynamics(cfd)simulation temperature polarization carbon membrane
原文传递
Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery
8
作者 LIU Handan WANG Shigang XU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期440-445,共6页
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther... Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application. 展开更多
关键词 Magnetic targeting drug delivery FERROFLUIDS magnetic nano-particels process modeling HYDRODYNAMICS computational fluid dynamics(cfd numerical simulation Magnetic resonance imaging
下载PDF
Impact of human motion on TVOCs inhalation dose under side re-circulated ventilation
9
作者 张泉 曾丽萍 +2 位作者 谢更新 张国强 牛建磊 《Journal of Central South University》 SCIE EI CAS 2009年第4期599-607,共9页
The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly ... The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly defined ratio of relative inhalation dose level (RIDL) to assess indoor air quality (IAQ). A user defined function based on CFD (computational fluid dynamics) was developed, which integrated human motion model with TVOCs emission model in a high sidewall air supply ventilation mode. Based on simulation results of 10 cases, it is shown that the spatial concentration distribution of TVOCs is affected by human motion. TVOCs diffusion characteristic of building material is the most effective way to impact the TVOCs inhalation dose. From the RIDL index, case A-2 has the most serious IAQ problem, while case D-1 is of the best IAQ. 展开更多
关键词 indoor air quality (IAQ) human motion computational fluid dynamics cfd simulation volatile organic compounds(VOCs) CONTAMINANT relative inhalation dose level (RIDL) index
下载PDF
In-situ remediation of deep petroleum-contaminated soil injection
10
作者 Wang Yajun Dong Wantao +4 位作者 Chen Tianjing Li Li Zhang Yurong Xu Shenghui Fu Dafang 《Journal of Southeast University(English Edition)》 EI CAS 2021年第4期394-400,共7页
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ... A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment. 展开更多
关键词 in-situ chemical oxidation high-pressure jet total petroleum hydrocarbons remediation of contaminated soil computational fluid dynamics(cfd)numerical simulation
下载PDF
Theoretical modeling and numerical simulations of plasmas generated by shock waves 被引量:7
11
作者 LI JianQiao HAO Li LI Jian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2204-2212,共9页
Electromagnetic(EM) field is a consequence of the plasma generation induced by shock waves generated in impacts and explosions and is an important topic of study in aerospace and geophysics. Experimental research is f... Electromagnetic(EM) field is a consequence of the plasma generation induced by shock waves generated in impacts and explosions and is an important topic of study in aerospace and geophysics. Experimental research is frequently used to investigate the plasma generation in hypervelocity impacts and the EM wave emitted in chemical explosions. However, the basic plasma generation mechanism leading to the EM emission generated by the shock waves in chemical explosions is rarely studied.Therefore, a detailed investigation is performed to determine the state of the plasmas generated by the shock waves in air blast. In addition, a multi-component ionization model was improved to evaluate the ionization state of the generated plasmas. The proposed ionization model was combined with an AUSM+-up based finite volume method(FVM) to simulate the plasmas generated in the air blast. Two typical cases of simulation were carried out to investigate the relation between the shock waves and ionization, as well as the influence of ground reflection on the ionization state. It was found that the ionization zone was close behind the shock front in the air and propagates along with the shock waves. The interaction between the original shock waves and reflected shock waves was found to have a great impact of the order of 2–3 magnitudes, on the degree of ionization of the plasmas generated by the shock waves. This phenomenon explains the observation of additional EM pulses generated by ground reflection, as explored in the reference cited in this paper. 展开更多
关键词 plasma generation air blast shock waves local thermal and reactive equilibrium(LTRE)state computational fluid dynamics(cfd)simulation
原文传递
Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes 被引量:5
12
作者 Changning Wu Binhang Yan Yong Jin Yi Cheng 《Particuology》 SCIE EI CAS CSCD 2010年第6期525-530,共6页
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian... This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general. 展开更多
关键词 Gas-solid chemically reacting flow Cross-scale modeling and simulation Eulerian-Lagrangian scheme Computational fluid dynamics cfd Discrete element method (DEM) Discrete phase model (DPM)
原文传递
Numerical simulations of single and multi-staged injection of H_(2) in a supersonic scramjet combustor 被引量:1
13
作者 L.Abu-Farah O.J.Haidn H.-P.Kau 《Propulsion and Power Research》 SCIE 2014年第4期175-186,共12页
Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Uns... Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Unstructured terahedral grids for narow channel and quarter geometries of the combustor are generated by using ICEM CFD.Steady three dimensional(3D)Reynods averaged Navier-stokes(RANS)simulations are carried out in the case of no H_(2) injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection.Shear stuess transport(SST)based on k-ω turbulent model is adopted.Flow field visualization(omplex shock waves interactions)and static pressure distribution along the wall of the combustor are pradicted and compared with the experimental schlieren images and measured wall static pressures for validation.A good agreement is found between the CFD predicted results and the measured data.The narow and quarter geometries of the combustor give similar results with very small differences.Multi-staged injections of H_(2) enhance the turbulent H_(2)/air mixing by fomming vortices and additional shock waves(bow shocks). 展开更多
关键词 Computational fluid dynamics(cfd)Reynolds-averaged Navier-stokes(RANS)simulation Supersonic combustor Shear stresstransport(SST)k-ω Static pressures H_(2)/air mixing Single/multi-stage injection
原文传递
Numerical analysis of a projecting wall type oscillating water column(PW-OWC)wave energy converter in regular waves
14
作者 Lei Tan Ruiyuan Chang Tomoki Ikoma 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第3期479-491,共13页
Oscillating water column(OWC)based wave energy absorption devices are classic which have been widely used for harnessing ocean wave energy.This paper presents a numerical study on a projecting wall(PW)type OWC wave en... Oscillating water column(OWC)based wave energy absorption devices are classic which have been widely used for harnessing ocean wave energy.This paper presents a numerical study on a projecting wall(PW)type OWC wave energy converter in regular waves.The computational fluid dynamics(CFD)modelling of a stationary floating PW-OWC model in a three-dimensional wave flume is achieved by the software Flow-3D.Numerical analyses are carried out based on CFD simulations and the linear potential flow solutions with modifications to account for turbine-induced damping.The present numerical solutions are validated against our previous experimental data.It is found that both the CFD and modified linear potential flow predictions are in reasonably good agreements with the experimental data in the first order results of OWC and air pressure responses.When the nonlinear responses are included in the result,the modified linear potential flow solution is found to slightly under-estimate the wave energy conversion performance at long wavelengths.Regarding the airflows above and below the chamber orifice,the CFD results suggest that they are almost unidirectional,oscillating in not only the base frequency but also subharmonic and ultraharmonic frequencies.The evolution of the OWC responses during an entire period and the phase analysis based on CFD simulations are presented.The phase results provide the crucial evidence to the reasonability of the physics-based modification of the potential flow model in modelling of OWCs.The present results and analysis are expected to be beneficial to the understanding on the physical mechanism of OWCs and the design of phase control strategies. 展开更多
关键词 Computational fluid dynamics(cfd)simulation hydrodynamic analysis oscillating water column(OWC)damping orifice airflow phase difference
原文传递
Influence of flow field on stability of throttled surge tanks with standpipe 被引量:4
15
作者 安建峰 张健 +1 位作者 俞晓东 陈胜 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第2期294-299,共6页
The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flo... The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flow field by using the Computational Fluid Dynamics (CFD) method. It is shown that the anticlockwise recirculation zone is formed in the standpipe, which affects the local head loss at the junction of the standpipe with the pipeline. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. Considering the effects of the recirculation zone, an empirical expression of the critical stability area is obtained. Comparing with the Thoma critical area, the area obtained by the present method is smaller, and the reduction depends on the diameter ratio and the ratio of the velocity head to the head losses in the tunnel. words: 展开更多
关键词 critical stability area throttled surge tank Computational Fluid Dynamics cfd simulation turbulence model flow field
原文传递
The effects of caudal fin deformation on the hydrodynamics of thunniform swimming under self-propulsion 被引量:2
16
作者 Yi-kun Feng Yu-min Su +1 位作者 Huan-xing Liu Yuan-yuan Su 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1122-1137,共16页
To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform ... To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform kinematics.The 3-D vortices are visualized to reveal the role of the leading-edge vortex(LEV)in the thrust generation.By comparing the swimming velocity of the swimmer with different caudal fin flexure amplitudes fa,it is shown that the acceleration in the starting stage of the swimmer increases with the increase of fa,but its cruising velocity decreases.The results indicate that the caudal fin deformation is beneficial to the fast start but not to the fast cruising of the swimmer.During the entire swimming process,the undulation amplitudes of the lateral velocity and the yawing angular velocity decrease as fa increases.It is found that the formation of an attached LEV on the caudal fin is responsible for generating the low-pressure region on the surface of the caudal fin,which contributes to the thrust.Furthermore,the caudal fin deformation can delay the LEV shedding from the caudal fin,extending the duration of the low pressure on the caudal fin,which will cause the caudal fin to generate a drag-type force over a time period in one swimming cycle and reduce the cruising speed of the swimmer. 展开更多
关键词 Computational fluid dynamics(cfd)numerical simulation SELF-PROPULSION caudal fin DEFORMATION
原文传递
Numerical investigation of the ship propeller load under reversed propulsion condition 被引量:1
17
作者 Xiang Fan Jin-jing Tang +3 位作者 Yu-xin Zhang Hai-su Sun Yi-qing Gu Jing-xin Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第2期361-369,共9页
Stopping maneuver is an important research topic in ship maneuverability.The stopping ability of ship is not only related to the hydrodynamic characteristics of hull,rudder and propeller,but also related to the capaci... Stopping maneuver is an important research topic in ship maneuverability.The stopping ability of ship is not only related to the hydrodynamic characteristics of hull,rudder and propeller,but also related to the capacity of main engine.However,there are few researches on the capacity of main engine under reversed propulsion condition.In the paper,a numerical water tank is established to simulate the propeller loads using the computational fluid dynamics(CFD)software STAR CCM+.The numerical model is firstly validated by experimental data,and then is used to investigate the propeller loads on a full-scale model with different ship speed and propeller speed.By dimensionless,the relations between the advance coefficient and the load coefficients are shown as J-KT curves and J-KQ curves.Furtherly,the flow structures near the propeller and the pressure on the propeller with different J values are investigated.The simulations reveal that the flow velocities induced by the reversed propulsion of the propeller is similar to the wake flow by ship with J=-0.49.That is the reason for the minimum points of J-KT and J-KQ curve occurring in cases with J=-0.49.Subsequently,the capacity of the main engine and the output load of the propeller are considered comprehensively.The relations between the ship speeds and the maximum output loads on the propeller are discussed in details. 展开更多
关键词 PROPELLER load REVERSE PROPULSION COMPUTATIONAL fluid dynamics(cfd)simulation
原文传递
Numerical study on morphological characteristics of rotational natural supercavitation by rotational supercavitating evaporator with optimized blade shape 被引量:1
18
作者 Zhi-ying Zheng Qian Li +4 位作者 Lu Wang Li-ming Yao Wei-hua Cai Hui Li Feng-chen Li 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期468-485,共18页
In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in t... In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in the RSCE for the performance optimization, the blade shapes of different sizes are designed by utilizing the improved calculation method for the blade shape and the validated empirical formulae based on previous two-dimensional numerical simulations, from which the optimized blade shape with the wedge angle of 45° and the design speed of 5 000 r/min is selected. The estimation method for the desalination performance parameters is developed to validate the feasibility of the utilization of the results obtained by the two-dimensional numerical simulations in the design of the three-dimensional blade shape. Three-dimensional numerical simulations are then conducted for the supercavitating flows around the rotational cavitator with the optimized blade shape at different rotational speeds to obtain the morphological characteristics of the rotational natural supercavitation. The results show that the profile of the supercavity tail is concaved toward the inside of the supercavity due to the re-entrant jet. The empirical formulae for estimating the supercavity size with consideration of the rotation are obtained by fitting the data, with the exponents different from those obtained by the previous two-dimensional numerical simulations. The influences of the rotation on the morphological characteristics are analyzed from the perspectives of the tip and hub vortices and the interaction between the supercavity tail and the blade. Further numerical simulation of the supercavitating flow around the rotational cavitator made up by the blades with exit edge of uniform thickness illustrate that the morphological characteristics are also affected by the blade shape. 展开更多
关键词 Rotational natural supercavitation morphological characteristics blade shape computational fluid dynamics(cfd)numerical simulation rotational supercavitating evaporator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部