Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor...Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly.展开更多
Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present ...Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present work a new spiral flow field with a bypass is proposed.The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass.The bypasses are arranged incrementally.The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used.The influence of the concentration of liquid water and oxygen in the cell on the performance of different flow fields is determined by means of Computational fluid dynamics(COMSOL Multiphysics software).Results show that when the bypass number is 48 and its cross-sectional area is 0.5 mm^(2),the cell exhibits the best performances.展开更多
The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow f...The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.展开更多
Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion ...Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process.展开更多
Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train s...Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios.展开更多
To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In...To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In particular,the Eulerian-Eulerian approach was employed to calculate the paint atomization and film deposition process.Different spray heights,spray angles,spray gun movement speeds,spray trajectory curvature radii,and air pressure values were considered.Numerical simulation results indicate that the angle of spray painting significantly affects the velocity of droplets near the spray surface.With an increase in the spraying angle,spraying height and spray gun movement speed,the maximum film thickness decreases to varying degrees,and the uniformity of the film thickness also continuously worsens.When the spray gun moves along an arc trajectory,at smaller arc radii,the film thickness on the inside of the arc is slightly greater than that on the outside,but the impact on the maximum film thickness is minimal.Increasing air pressure expands the coating coverage area,results in finer atomization of paint droplets,and leads to a thinner and a more uniform paint film.However,if the pressure is too high,it can cause paint splattering.Using the orthogonal experimental method,multiple sets of simulation calculations were conducted,and the combined effects of spraying height,spray angle,and spray gun movement speed on the film thickness distribution were comprehensively analyzed to determine optimal configurations.Finally,the reliability of the numerical simulations was validated through dynamic spray painting experiments.展开更多
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the ...The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the same time,the effects of the disc speed,diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD(Computational Fluid Dynamics)numerical simulation,by which the pressure,velocity,and output efficiency of the internal flow field are obtained under different internal and external conditions.The highest efficiency(66.4%)is obtained for a number of nozzles equal to 4,a disk thickness of 1 mm,and a gap of 1 mm between the disks.The results of the study serve as a theoretical basis for the structural design and optimization of Tesla turbines.展开更多
Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena i...Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.展开更多
Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and sol...Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.展开更多
Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's...Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas.展开更多
Indoor microclimate is important for crop production and quality in greenhouse cultivation. This paper focuses on microclimate study based on a computational fluid dynamics (CFD) model of a typical plastic greenhou...Indoor microclimate is important for crop production and quality in greenhouse cultivation. This paper focuses on microclimate study based on a computational fluid dynamics (CFD) model of a typical plastic greenhouse (with a sector shape vertical cross-section) popularly used in central China. A radiation model is added into the CFD model so as to simulate coupling of convective transfers and radiative exchanges at the cover and the roof, instead of using the usual coupling approach based on energy balance. In addition, a fractal permeability model is innovatively adopted in the modeling of the crop canopy. Compared the numerical results with measured experimental data, the model simulation is proved with success. This model then is used to explore the microclimate variable distributions in the greenhouse. It shows that the airflow pattern, temperature and humidity profiles are different from those in a sawtooth Mediterranean- type greenhouse. The study suggests that this deliberately developed CFD model can be served as a useful tool in macroclimate research and greenhouse design investigating.展开更多
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua...A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.展开更多
Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and t...Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.展开更多
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num...Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.展开更多
Point absorber wave energy device with multiple degrees of freedom(DOF) is assumed to have a better absorption ability of mechanical energy from ocean waves. In this paper, a coaxial symmetric articulated point absorb...Point absorber wave energy device with multiple degrees of freedom(DOF) is assumed to have a better absorption ability of mechanical energy from ocean waves. In this paper, a coaxial symmetric articulated point absorber wave energy converter with two degrees of freedom is presented. The mechanical equations of the oscillation buoy with power take-off mechanism(PTO) in regular waves are established. The three-dimensional numerical wave tank is built in consideration of the buoy motion based upon the CFD method. The appropriate simulation elements are selected for the buoy and wave parameters. The feasibility of the CFD method is verified through the contrast between the numerical simulation results of typical wave conditions and test results. In such case, the buoy with single DOF of heave, pitch and their coupling motion considering free(no PTO damping) and damped oscillations in regular waves are simulated by using the verified CFD method respectively. The hydrodynamic and wave energy conversion characteristics with typical wave conditions are analyzed. The numerical results show that the heave and pitch can affect each other in the buoy coupling motion, hydrodynamic loads, wave energy absorption and flow field.The total capture width ratio with two coupled DOF motion is higher than that with a single DOF motion. The wave energy conversion of a certain DOF motion may be higher than that of the single certain DOF motion even though the wave is at the resonance period. When the wave periods are high enough, the interaction between the coupled DOF motions can be neglected.展开更多
This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine...This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.展开更多
Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of orien...Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of oriented valves within a tray and meshed into two parts with different grid types and sizes.The volume fraction correlation concerning inter-phase momentum transfer source was fitted based on experimental data,and built in UDF for simulation.The flow pattern of oriented valve tray under different operating conditions was simulated under Eulerian-Eulerian framework with realizable k-ε model.The predicted liquid height from CFD simulation was in good agreement with the results of pressure drop and volume fraction correlations.Meanwhile,the velocity distribution and volume fraction of the two phases were demonstrated and analyzed,which are useful in design and analysis of the column trays.展开更多
A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum ba...A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds.展开更多
As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous in...As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation efficiency of inner channels.An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube.The three-dimensional computational fluid dynamics(CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube.A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied.The relationship between permeation efficiency and channel locations,and the method for increasing the permeation efficiency of inner channels were proposed.Some novel multichannel membrane configurations with more permeate side channels were put forward and evaluated.展开更多
基金supported partly by the Ministry of Science and Technology of the People's Republic of China (No. 2020YFB1902100)the Shanghai Municipal Commission of Economy and Informatization (No. GYQJ-2018-2-02)。
文摘Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly.
基金Thanks to Major Scientific and Technological Innovation Projects in Shandong Province(2018-CXGC0803)for the financial support of this article.
文摘Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present work a new spiral flow field with a bypass is proposed.The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass.The bypasses are arranged incrementally.The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used.The influence of the concentration of liquid water and oxygen in the cell on the performance of different flow fields is determined by means of Computational fluid dynamics(COMSOL Multiphysics software).Results show that when the bypass number is 48 and its cross-sectional area is 0.5 mm^(2),the cell exhibits the best performances.
基金Project(51405389)supported by the National Natural Science Foundation of ChinaProject(2014003)supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China+1 种基金Project(3102015ZY024)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(108-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China
文摘The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.
基金supported by National Natural Science Foundation of China(No.52075334)。
文摘Field emission electric propulsion(FEEP) thrusters possess excellent characteristics, such as high specific impulse, low power requirements, compact size and precise pointing capabilities,making them ideal propulsion devices for micro-nano satellites. However, the detection of certain aspects, such as the evolution process of the liquid cone and the physical quantities at the cone apex, proves challenging due to the minute size of the needle tip and the vacuum environment in which they operate. Consequently, this paper introduces a computational fluid dynamics(CFD) model to gain insight into the formation process of the liquid cone on the tip apex of indium FEEP. The CFD model is based on electrohydrodynamic(EHD) equations and the volume of fluid(VOF) method. The entire cone formation process can be divided into three stages, and the time-dependent characteristics of the physical quantities at the cone apex are investigated. The influences of film thickness, apex radius size and applied voltage are compared.The results indicate a gradual increase in the values of electrostatic stress and surface tension stress at the cone apex over an initial period, followed by a rapid escalation within a short duration.Apex configurations featuring a small radius, thick film and high voltage exhibit a propensity for liquid cone formation, and the cone growth time decreases as the film thickness increases.Moreover, some unstable behavior is observed during the cone formation process.
基金This study was supported in part by the National Natural Science Foundation of China under Grant Nos.52278463,52208505,and 52202422.
文摘Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios.
基金supported in part by the National Natural Science Foundation of China(51405418)in part by the Jiangsu“Qing Lan Project”Talent Project(2021)Projects of Natural Science Research in Jiangsu Higher Education Institutions(Grant No.22KJD460009).
文摘To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In particular,the Eulerian-Eulerian approach was employed to calculate the paint atomization and film deposition process.Different spray heights,spray angles,spray gun movement speeds,spray trajectory curvature radii,and air pressure values were considered.Numerical simulation results indicate that the angle of spray painting significantly affects the velocity of droplets near the spray surface.With an increase in the spraying angle,spraying height and spray gun movement speed,the maximum film thickness decreases to varying degrees,and the uniformity of the film thickness also continuously worsens.When the spray gun moves along an arc trajectory,at smaller arc radii,the film thickness on the inside of the arc is slightly greater than that on the outside,but the impact on the maximum film thickness is minimal.Increasing air pressure expands the coating coverage area,results in finer atomization of paint droplets,and leads to a thinner and a more uniform paint film.However,if the pressure is too high,it can cause paint splattering.Using the orthogonal experimental method,multiple sets of simulation calculations were conducted,and the combined effects of spraying height,spray angle,and spray gun movement speed on the film thickness distribution were comprehensively analyzed to determine optimal configurations.Finally,the reliability of the numerical simulations was validated through dynamic spray painting experiments.
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金the National Natural Science Foundation of China(No.51876114)Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the same time,the effects of the disc speed,diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD(Computational Fluid Dynamics)numerical simulation,by which the pressure,velocity,and output efficiency of the internal flow field are obtained under different internal and external conditions.The highest efficiency(66.4%)is obtained for a number of nozzles equal to 4,a disk thickness of 1 mm,and a gap of 1 mm between the disks.The results of the study serve as a theoretical basis for the structural design and optimization of Tesla turbines.
基金supported by the National Natural Science Foundation of China(51866012)the Major Project of the Natural Science Foundation of Inner Mongolia Autonomous Region(2018ZD08)the Fundamental Research Funds for the Central Universities of Inner Mongolia Autonomous Region(JY20220037).
文摘Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.
基金support from the Major State Basic Research Development Program of China (973 Program,2005CB221205)National Natural Science Foundation of China (No.20490200 and 20576076)
文摘Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Science Foundation of China under contract Nos 41476032,91028009 and 40806019
文摘Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas.
基金supported by the National Natural Science Foundation of China (50979077)
文摘Indoor microclimate is important for crop production and quality in greenhouse cultivation. This paper focuses on microclimate study based on a computational fluid dynamics (CFD) model of a typical plastic greenhouse (with a sector shape vertical cross-section) popularly used in central China. A radiation model is added into the CFD model so as to simulate coupling of convective transfers and radiative exchanges at the cover and the roof, instead of using the usual coupling approach based on energy balance. In addition, a fractal permeability model is innovatively adopted in the modeling of the crop canopy. Compared the numerical results with measured experimental data, the model simulation is proved with success. This model then is used to explore the microclimate variable distributions in the greenhouse. It shows that the airflow pattern, temperature and humidity profiles are different from those in a sawtooth Mediterranean- type greenhouse. The study suggests that this deliberately developed CFD model can be served as a useful tool in macroclimate research and greenhouse design investigating.
基金support from National Basic Research Program of China(No.2009CB219801)National Natural Science Foundation of China(No.20976191)+1 种基金International Cooperative Program of Guizhou Province([2009]700110)Program for New Century Excellent Talents in University(NCET-09-0342)
文摘A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.
文摘Computational fluid dynamics (CFD) simulations were carried out on the gas flow patterns of twin-tangential annular deflector gas distributor in the absence of liquid flow in a packed column (6.4 m in diameter), and the gas flow field in the column was presented close to reality on the whole. Furthermore, after ame-(lioration) of this gas distributor frame, turbulence energy and turbulence energy dissipation rate were both decreased greatly.Simulation results showed that the flow pattern and the distribution of gas flow were strongly affected by the column bottom frame; the proper column bottom frame could decrease the flow pressure drop greatly. Multifold factors, such as the column bottom geometry structure and distributor structure which affects the distribution capacity, must be considered.
基金National Natural Science Foundation of China (No.50435030)
文摘Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
基金financially supported by the National Natural Science Foundation of China(Grant No.51579055)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180980)
文摘Point absorber wave energy device with multiple degrees of freedom(DOF) is assumed to have a better absorption ability of mechanical energy from ocean waves. In this paper, a coaxial symmetric articulated point absorber wave energy converter with two degrees of freedom is presented. The mechanical equations of the oscillation buoy with power take-off mechanism(PTO) in regular waves are established. The three-dimensional numerical wave tank is built in consideration of the buoy motion based upon the CFD method. The appropriate simulation elements are selected for the buoy and wave parameters. The feasibility of the CFD method is verified through the contrast between the numerical simulation results of typical wave conditions and test results. In such case, the buoy with single DOF of heave, pitch and their coupling motion considering free(no PTO damping) and damped oscillations in regular waves are simulated by using the verified CFD method respectively. The hydrodynamic and wave energy conversion characteristics with typical wave conditions are analyzed. The numerical results show that the heave and pitch can affect each other in the buoy coupling motion, hydrodynamic loads, wave energy absorption and flow field.The total capture width ratio with two coupled DOF motion is higher than that with a single DOF motion. The wave energy conversion of a certain DOF motion may be higher than that of the single certain DOF motion even though the wave is at the resonance period. When the wave periods are high enough, the interaction between the coupled DOF motions can be neglected.
文摘This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.
文摘Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of oriented valves within a tray and meshed into two parts with different grid types and sizes.The volume fraction correlation concerning inter-phase momentum transfer source was fitted based on experimental data,and built in UDF for simulation.The flow pattern of oriented valve tray under different operating conditions was simulated under Eulerian-Eulerian framework with realizable k-ε model.The predicted liquid height from CFD simulation was in good agreement with the results of pressure drop and volume fraction correlations.Meanwhile,the velocity distribution and volume fraction of the two phases were demonstrated and analyzed,which are useful in design and analysis of the column trays.
基金Supported by EU Comm ission(No.ENK5 - CT2 0 0 0 - 0 0 314 )
文摘A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds.
基金Supported by the National Basic Research Program of China(2012CB224806)the National Natural Science Foundation of China(21490584,21476236)the National High Technology Research and Development Program of China(2012AA03A606)
文摘As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation efficiency of inner channels.An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube.The three-dimensional computational fluid dynamics(CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube.A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied.The relationship between permeation efficiency and channel locations,and the method for increasing the permeation efficiency of inner channels were proposed.Some novel multichannel membrane configurations with more permeate side channels were put forward and evaluated.