Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the ...Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.展开更多
In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or...In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements.展开更多
文摘Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.
基金Imam Khomeini International University(IKIU)for providing financial support during the research undertaken in the Civil Engineering Department at IKIU,Iran
文摘In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements.