时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算...时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。展开更多
针对当前扩展目标跟踪量测划分方法中,距离划分存在划分数过多、计算复杂度高的问题,本文将密度峰值快速聚类算法CFSFDP (Clustering by Fast Search and Find of Density Peaks)与箱粒子势概率假设滤波器(Box Cardinalized Probability...针对当前扩展目标跟踪量测划分方法中,距离划分存在划分数过多、计算复杂度高的问题,本文将密度峰值快速聚类算法CFSFDP (Clustering by Fast Search and Find of Density Peaks)与箱粒子势概率假设滤波器(Box Cardinalized Probability Hypothesis Density filter, Box-CPHD)相结合,提出基于CFSFDP的箱粒子CPHD扩展目标滤波算法.该算法采用CFSFDP进行量测划分,基于量测信息密度的不同可以有效划分区间量测,并剔除杂波量测,然后采用箱粒子CPHD进行预测更新和目标状态估计.仿真实验表明与经典的距离划分方法相比,在箱粒子CPHD扩展目标算法流程中采用CFSFDP进行量测预处理, CFSFDP在达到同等效果的前提下,运行时间明显减少;在剔除杂波之后的高杂波环境下,杂波的变化只影响距离划分的运算时间而不再影响CFSFDP划分,采用CFSFDP处理量测信息可以有效提高运行效率和算法实时性,剔除杂波之后在一定程度上提高了目标位置估计精度.展开更多
CFSFDP(Clustering by Fast Search and Find of Density Peaks)算法在单个簇中存在多个密度峰值时,使用决策图难以确定聚类中心数量,导致聚类效果不佳的情况。对此提出将所有密度大于当前位置的数据点以及与当前位置的最小距离各归为...CFSFDP(Clustering by Fast Search and Find of Density Peaks)算法在单个簇中存在多个密度峰值时,使用决策图难以确定聚类中心数量,导致聚类效果不佳的情况。对此提出将所有密度大于当前位置的数据点以及与当前位置的最小距离各归为一个集合,并对高斯核求得的局部密度排序。当存在多个密度峰值时,只选择第一个点作为聚类中心,同时利用归一化的γ值分布图确定聚类中心数。人工数据集和UCI数据集的数值模拟实验表明,改进CFSFDP算法在调整兰德系数、同质性、完整性、V-measure和标准互信息评分等各指标值均优于CFSFDP算法、DBSCAN算法和k-means算法。该算法弥补了CFSFDP算法对多密度峰值不能很好聚类的缺陷,适用于对较低维度的任意形数据集的聚类。展开更多
目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSF...目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSFDP)的目标分群方法。该方法将目标分群转化为数据集聚类问题,通过计算目标间的流形距离来衡量目标间的相似度,然后在流形距离的基础上利用CFSFDP算法搜索聚类中心,指定其余数据点类别。仿真实验以人工数据集和UCI数据集为对象,验证了M-CFSFDP算法聚类效果优于CFSFDP算法;同时将M-CFSFDP应用在战场目标静态与动态分群中,仿真结果表明了该方法的正确性与有效性。展开更多
文摘时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。
文摘针对当前扩展目标跟踪量测划分方法中,距离划分存在划分数过多、计算复杂度高的问题,本文将密度峰值快速聚类算法CFSFDP (Clustering by Fast Search and Find of Density Peaks)与箱粒子势概率假设滤波器(Box Cardinalized Probability Hypothesis Density filter, Box-CPHD)相结合,提出基于CFSFDP的箱粒子CPHD扩展目标滤波算法.该算法采用CFSFDP进行量测划分,基于量测信息密度的不同可以有效划分区间量测,并剔除杂波量测,然后采用箱粒子CPHD进行预测更新和目标状态估计.仿真实验表明与经典的距离划分方法相比,在箱粒子CPHD扩展目标算法流程中采用CFSFDP进行量测预处理, CFSFDP在达到同等效果的前提下,运行时间明显减少;在剔除杂波之后的高杂波环境下,杂波的变化只影响距离划分的运算时间而不再影响CFSFDP划分,采用CFSFDP处理量测信息可以有效提高运行效率和算法实时性,剔除杂波之后在一定程度上提高了目标位置估计精度.
文摘CFSFDP(Clustering by Fast Search and Find of Density Peaks)算法在单个簇中存在多个密度峰值时,使用决策图难以确定聚类中心数量,导致聚类效果不佳的情况。对此提出将所有密度大于当前位置的数据点以及与当前位置的最小距离各归为一个集合,并对高斯核求得的局部密度排序。当存在多个密度峰值时,只选择第一个点作为聚类中心,同时利用归一化的γ值分布图确定聚类中心数。人工数据集和UCI数据集的数值模拟实验表明,改进CFSFDP算法在调整兰德系数、同质性、完整性、V-measure和标准互信息评分等各指标值均优于CFSFDP算法、DBSCAN算法和k-means算法。该算法弥补了CFSFDP算法对多密度峰值不能很好聚类的缺陷,适用于对较低维度的任意形数据集的聚类。
文摘目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSFDP)的目标分群方法。该方法将目标分群转化为数据集聚类问题,通过计算目标间的流形距离来衡量目标间的相似度,然后在流形距离的基础上利用CFSFDP算法搜索聚类中心,指定其余数据点类别。仿真实验以人工数据集和UCI数据集为对象,验证了M-CFSFDP算法聚类效果优于CFSFDP算法;同时将M-CFSFDP应用在战场目标静态与动态分群中,仿真结果表明了该方法的正确性与有效性。