The scale factor accuracy of superconducting gravimeters (SG) can be largely improved by a high repetition rate of calibration experiments. At stations where the availability of absolute gravimeters is limited, care...The scale factor accuracy of superconducting gravimeters (SG) can be largely improved by a high repetition rate of calibration experiments. At stations where the availability of absolute gravimeters is limited, carefully calibrated spring gravimeters can be used for providing the reference signal assuming the irregular drift is properly adjusted. The temporal stability of the SG scale factor is assessable by comparing the temporal variations of M2 tidal parameters observed at neighboring SG sites or from synthetic tide models. Combining these methods reduces the SG scale factor error to a few 0.1%0. The paper addresses the particular procedure required for evaluating the calibration experiments based on spring gravimeters and presents results obtained at Conrad observatory (Austria). Comparing the M2 amplitude factor modulation helped to reveal a SG scale factor offset of about 0.2%0 due to re-installation.展开更多
Zero drift and solid Earth tide corrections to static relative gravirnetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the so...Zero drift and solid Earth tide corrections to static relative gravirnetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and noise with PCA to obtain desired signals. The results of the linear drift extracted by PCA are consistent with those calculated by the least squares linear fitting, and the differences only reach to 10-2μGal/day order of magnitude. Furthermore, PCA is used to estimate the solid Earth tide from the relative gravimetric data corrected by the zero drift. The statistical results are consistent with the results derived from the solid Earth tide correction provided by the internal software of the CG-5 gravimeter (SCINTREX Limited Ontario Canada). The statistical results of the differences between the two methods are both less than 8 ,Gal, and the RMSs for 9 days are all less than 5 μGal.展开更多
文摘The scale factor accuracy of superconducting gravimeters (SG) can be largely improved by a high repetition rate of calibration experiments. At stations where the availability of absolute gravimeters is limited, carefully calibrated spring gravimeters can be used for providing the reference signal assuming the irregular drift is properly adjusted. The temporal stability of the SG scale factor is assessable by comparing the temporal variations of M2 tidal parameters observed at neighboring SG sites or from synthetic tide models. Combining these methods reduces the SG scale factor error to a few 0.1%0. The paper addresses the particular procedure required for evaluating the calibration experiments based on spring gravimeters and presents results obtained at Conrad observatory (Austria). Comparing the M2 amplitude factor modulation helped to reveal a SG scale factor offset of about 0.2%0 due to re-installation.
基金supported by the National Natural Science Foundation of China(41374009)the Public Benefit Scientific Research Project of China(201412001)+1 种基金the Shandong Natural Science Foundation of China(ZR2013DM009)the SDUST Research Fund(2014TDJH101)
文摘Zero drift and solid Earth tide corrections to static relative gravirnetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and noise with PCA to obtain desired signals. The results of the linear drift extracted by PCA are consistent with those calculated by the least squares linear fitting, and the differences only reach to 10-2μGal/day order of magnitude. Furthermore, PCA is used to estimate the solid Earth tide from the relative gravimetric data corrected by the zero drift. The statistical results are consistent with the results derived from the solid Earth tide correction provided by the internal software of the CG-5 gravimeter (SCINTREX Limited Ontario Canada). The statistical results of the differences between the two methods are both less than 8 ,Gal, and the RMSs for 9 days are all less than 5 μGal.