期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites
1
作者 Chengkan Xu Xiaofei Wang +2 位作者 Yixuan Li Guannan Wang He Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期957-974,共18页
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru... Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites. 展开更多
关键词 Periodic composites localized stress recovery conditional generative adversarial network
下载PDF
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
2
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
下载PDF
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks 被引量:19
3
作者 Tuan-Feng Zhang Peter Tilke +3 位作者 Emilien Dupont Ling-Chen Zhu Lin Liang William Bailey 《Petroleum Science》 SCIE CAS CSCD 2019年第3期541-549,共9页
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle... This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend. 展开更多
关键词 GEOLOGICAL FACIES Geomodeling Data conditioning generative adversarial networkS
下载PDF
Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty
4
作者 Qingrong Zeng Xiaochen Liu +2 位作者 Xuefeng Zhu Xiangkui Zhang Ping Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2065-2085,共21页
Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challe... Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challenge,we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty(CGAN-GP).This innovative method allows for nearly instantaneous prediction of optimized structures.Given a specific boundary condition,the network can produce a unique optimized structure in a one-to-one manner.The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization(SIMP)method.Subsequently,we design a conditional generative adversarial network and train it to generate optimized structures.To further enhance the quality of the optimized structures produced by CGAN-GP,we incorporate Pix2pixGAN.This augmentation results in sharper topologies,yielding structures with enhanced clarity,de-blurring,and edge smoothing.Our proposed method yields a significant reduction in computational time when compared to traditional topology optimization algorithms,all while maintaining an impressive accuracy rate of up to 85%,as demonstrated through numerical examples. 展开更多
关键词 Real-time topology optimization conditional generative adversarial networks dimension curse CMES 2024 vol.141 no.3
下载PDF
融合迁移学习与CGAN的风电集群功率超短期预测
5
作者 周军 王渴心 王岩 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期9-18,共10页
针对可再生能源不确定性导致电力系统消纳能力不足的问题,提出一种基于条件生成对抗网络与迁移学习融合的风电集群功率超短期预测方法。首先,分析了风电集群功率预测样本模式的不均衡性以及导致的神经网络预测误差偏移现象;其次,构建了... 针对可再生能源不确定性导致电力系统消纳能力不足的问题,提出一种基于条件生成对抗网络与迁移学习融合的风电集群功率超短期预测方法。首先,分析了风电集群功率预测样本模式的不均衡性以及导致的神经网络预测误差偏移现象;其次,构建了条件生成对抗网络修复不均衡问题;最后,采用迁移学习结合时间卷积网络构建了风电集群功率超短期预测模型。测试结果表明,所提方法能够显著提高风电集群功率超短期预测精度。 展开更多
关键词 风电预测 风电集群 条件生成对抗网络 迁移学习 时间卷积网络
下载PDF
基于LSTM-CGAN的多微网数据驱动分布鲁棒协同优化运行策略
6
作者 李虹 韩雨萌 《电力系统保护与控制》 EI CSCD 北大核心 2024年第18期133-148,共16页
新能源的强烈不确定性给多微网协同运行带来了可靠性和安全性的巨大挑战。为此,提出一种基于长短期记忆(long short-term memory, LSTM)网络和条件生成对抗网络(conditional generative adversarial networks, CGAN)的多微网数据驱动两... 新能源的强烈不确定性给多微网协同运行带来了可靠性和安全性的巨大挑战。为此,提出一种基于长短期记忆(long short-term memory, LSTM)网络和条件生成对抗网络(conditional generative adversarial networks, CGAN)的多微网数据驱动两阶段分布鲁棒协同优化调度模型。首先,为更准确地描述新能源的不确定性,该模型以LSTM-CGAN生成和K-means++聚类算法削减得到的场景集作为分布鲁棒优化集合的初始新能源场景。其中CGAN网络模型使用Wasserstein距离作为判别器损失函数,以新能源日前预测值作为生成对抗网络的条件变量,并采用LSTM构建生成器和判别器。其次,提出一种基于多能点对点交易贡献率的利益分配方法,以实现合作收益的公平分配。然后,为保护各主体隐私并提高求解效率,提出一种耦合可并行计算列与约束生成(columnand constraint generation, C&CG)的交替方向乘子法(alternating direction multiplier method, ADMM)进行求解能量交易问题。算例结果表明,所提场景驱动方法生成的场景集能更准确、更有效地描述新能源的不确定性,能兼顾系统的鲁棒性、经济性和隐私性,并实现每个主体公平合理的利益分配。 展开更多
关键词 多微网 分布鲁棒优化 合作收益 长短期记忆网络 条件生成对抗网络
下载PDF
基于cGAN-SAE的室内定位指纹生成方法
7
作者 刘伟 王智豪 +1 位作者 李卓 韦嘉恒 《电子测量技术》 北大核心 2024年第14期57-63,共7页
针对室内定位中指纹采集成本高、构建数据集难等问题,提出了一种基于条件稀疏自编码生成对抗网络的室内定位指纹生成方法。该方法通过增加自编码器隐藏层和输出层,增强了特征提取能力,引导生成器学习并生成指纹数据的关键特征。利用指... 针对室内定位中指纹采集成本高、构建数据集难等问题,提出了一种基于条件稀疏自编码生成对抗网络的室内定位指纹生成方法。该方法通过增加自编码器隐藏层和输出层,增强了特征提取能力,引导生成器学习并生成指纹数据的关键特征。利用指纹选择算法筛选出最相关的指纹数据,扩充至指纹数据库中,并用于训练卷积长短时记忆网络模型以进行在线效果评估。实验结果表明,条件稀疏自编码生成对抗网络在不增加采集样本的情况下,提高了多栋多层建筑室内定位的精度。与原始条件生成对抗网络模型相比,在UJIIndoorLoc数据集上的预测中,定位误差降低了6%;在实际应用中,定位误差降低了14%。 展开更多
关键词 室内定位 稀疏自编码器 指纹数据库 条件生成对抗网络 卷积长短时记忆网络
下载PDF
基于改进CGAN的海冰SAR-to-Optical影像转换
8
作者 刘翔 王瑞富 +1 位作者 孙光 李媛 《海洋通报》 CAS CSCD 北大核心 2024年第4期452-462,共11页
遥感海冰监测是当前研究热点,通过条件生成对抗网络(CGAN)将海冰SAR影像转换成光学影像,可获得全天时全天候且形象直观的监测数据,但该方法得到的转换结果存在影像模糊、纹理弱化和颜色失真等问题。本文针对以上问题设计了改进的CGAN网... 遥感海冰监测是当前研究热点,通过条件生成对抗网络(CGAN)将海冰SAR影像转换成光学影像,可获得全天时全天候且形象直观的监测数据,但该方法得到的转换结果存在影像模糊、纹理弱化和颜色失真等问题。本文针对以上问题设计了改进的CGAN网络,综合当前的改进方式,新模型在网络结构上加入了空洞空间金字塔模块并设计了加入交叉特征融合模块的跳跃连接,使用结构相似性和L1范数联合损失函数。本文选取东波弗特海地区5景Sentinel-1影像和7景Sentinel-2影像开展实验,实验结果表明,改进CGAN转换的影像具有更好的视觉效果,峰值信噪比(PSNR)提高了3.4 dB,结构相似性(SSIM)提高了0.11,均方根误差(RMSE)降低了13%,并且经过转换后的影像比SAR影像海冰分类结果准确度提高了7.33%。 展开更多
关键词 海冰监测 条件生成对抗网络 SAR 光学影像 影像转换
下载PDF
太赫兹MIMO系统中基于SRCGAN的空时频信道估计方案
9
作者 蒋奕采 季薇 《移动通信》 2024年第6期97-104,114,共9页
为了能有效利用THz-MIMO系统的多维信道特性,提出一种基于SRCGAN的THz-MIMO系统信道估计方案。在该方案中,由预估计模块获得的初始空时域信道响应矩阵被视作一张二维的低分辨率图像,利用SRCGAN网络提取太赫兹信道的空时特性进行空时域... 为了能有效利用THz-MIMO系统的多维信道特性,提出一种基于SRCGAN的THz-MIMO系统信道估计方案。在该方案中,由预估计模块获得的初始空时域信道响应矩阵被视作一张二维的低分辨率图像,利用SRCGAN网络提取太赫兹信道的空时特性进行空时域信道补全获得完整的信道信息,然后相邻子载波之间的频率相关性作为SRGAN提供的条件信息提升信道估计精度。为了增强SRCGAN网络对时变信道预测的鲁棒性,在线上估计阶段,基于最大均方误差准则采用梯度下降算法对输入的预估计信道信息矩阵进行迭代更新。仿真结果证明了基于SRCGAN的空时频信道估计方案性能的优越性,以及利用信道“空时频”的相关性提升估计精度的有效性。 展开更多
关键词 THz-MIMO 信道估计 空时频域 超分辨率 条件生成对抗网络
下载PDF
Enhancing Pneumonia Detection in Pediatric Chest X-Rays Using CGAN-Augmented Datasets and Lightweight Deep Transfer Learning Models
10
作者 Coulibaly Mohamed Ronald Waweru Mwangi John M. Kihoro 《Journal of Data Analysis and Information Processing》 2024年第1期1-23,共23页
Pneumonia ranks as a leading cause of mortality, particularly in children aged five and under. Detecting this disease typically requires radiologists to examine chest X-rays and report their findings to physicians, a ... Pneumonia ranks as a leading cause of mortality, particularly in children aged five and under. Detecting this disease typically requires radiologists to examine chest X-rays and report their findings to physicians, a task susceptible to human error. The application of Deep Transfer Learning (DTL) for the identification of pneumonia through chest X-rays is hindered by a shortage of available images, which has led to less than optimal DTL performance and issues with overfitting. Overfitting is characterized by a model’s learning that is too closely fitted to the training data, reducing its effectiveness on unseen data. The problem of overfitting is especially prevalent in medical image processing due to the high costs and extensive time required for image annotation, as well as the challenge of collecting substantial datasets that also respect patient privacy concerning infectious diseases such as pneumonia. To mitigate these challenges, this paper introduces the use of conditional generative adversarial networks (CGAN) to enrich the pneumonia dataset with 2690 synthesized X-ray images of the minority class, aiming to even out the dataset distribution for improved diagnostic performance. Subsequently, we applied four modified lightweight deep transfer learning models such as Xception, MobileNetV2, MobileNet, and EfficientNetB0. These models have been fine-tuned and evaluated, demonstrating remarkable detection accuracies of 99.26%, 98.23%, 97.06%, and 94.55%, respectively, across fifty epochs. The experimental results validate that the models we have proposed achieve high detection accuracy rates, with the best model reaching up to 99.26% effectiveness, outperforming other models in the diagnosis of pneumonia from X-ray images. 展开更多
关键词 Pneumonia Detection Pediatric Radiology cgan (conditional generative adversarial networks) Deep Transfer Learning Medical Image Analysis
下载PDF
基于CGAN的抽油机电参数反演示功图研究
11
作者 李翔宇 邓昱航 袁春华 《沈阳理工大学学报》 CAS 2024年第3期1-9,共9页
示功图的精准测量在有杆抽油系统故障诊断中非常重要,针对载荷传感器直接测量法维护成本高、稳定性差,电参数间接测量法精度低、应用性不强的问题,提出一种基于条件生成对抗网络(CGAN)的电参数反演示功图混合模型。首先建立将电参数和... 示功图的精准测量在有杆抽油系统故障诊断中非常重要,针对载荷传感器直接测量法维护成本高、稳定性差,电参数间接测量法精度低、应用性不强的问题,提出一种基于条件生成对抗网络(CGAN)的电参数反演示功图混合模型。首先建立将电参数和机构参数转化光杆位移和负载的机理模型,生成粗糙的示功图样本数据;然后利用CGAN在图像转换领域的应用,建立粗糙示功图数据细化器,实现粗糙示功图与实测示功图之间的图像转化,使粗糙示功图与实测示功图更加相似;此外,为了使CGAN能更好地提取示功图轮廓,在生成器中加入自注意力机制进行改进。通过现场实测的电参数和示功图历史数据进行验证,结果表明该方法对比纯机理模型反演示功图的精度有显著提高。 展开更多
关键词 示功图测量 电参反演 条件生成对抗网络 图像转化
下载PDF
一种基于CGAN-CNN的同步电机转子绕组匝间短路故障诊断方法 被引量:20
12
作者 李俊卿 李斯璇 +2 位作者 陈雅婷 王振兴 何玉灵 《电力自动化设备》 EI CSCD 北大核心 2021年第8期169-174,共6页
由于同步电机故障样本数量较少,为解决同步电机故障诊断中普遍存在的样本不平衡问题,提出了一种基于条件生成式对抗网络(CGAN)和卷积神经网络(CNN)的同步电机转子绕组匝间短路故障诊断方法。首先,对传感器收集到的数据进行预处理,对正... 由于同步电机故障样本数量较少,为解决同步电机故障诊断中普遍存在的样本不平衡问题,提出了一种基于条件生成式对抗网络(CGAN)和卷积神经网络(CNN)的同步电机转子绕组匝间短路故障诊断方法。首先,对传感器收集到的数据进行预处理,对正常样本和故障样本分别添加标签后输入CGAN中生成大量新样本,将生成的新样本与原始样本混合并划分训练集和测试集;然后,利用CNN训练平衡后的数据集,充分、精准地提取有效故障特征;最后,在输出端利用Softmax分类器输出故障分类结果。通过实验证明,与非平衡数据集相比,利用平衡数据集后的故障识别准确率十分稳定且达到99.5%以上,同时与平衡的原始样本数据相比,生成样本避免了噪声和其他干扰,故障诊断的准确率也更高。 展开更多
关键词 同步电机 条件生成式对抗网络 卷积神经网络 生成样本 转子绕组匝间短路故障 故障诊断
下载PDF
基于cGAN的刀具磨损状态监测数据集增强方法 被引量:1
13
作者 杨巍 牛蒙蒙 +3 位作者 白玉珍 单春海 卢伟国 吕世旭 《制造技术与机床》 北大核心 2023年第6期55-60,共6页
在刀具磨损过程中,通常采集的正常磨损阶段的样本数据比初始磨损阶段和急剧磨损阶段的样本数据量多,这导致刀具磨损状态数据集不平衡,从而使深度学习网络模型对刀具磨损状态预测准确性降低。针对问题,文章提出一种基于cGAN的刀具磨损状... 在刀具磨损过程中,通常采集的正常磨损阶段的样本数据比初始磨损阶段和急剧磨损阶段的样本数据量多,这导致刀具磨损状态数据集不平衡,从而使深度学习网络模型对刀具磨损状态预测准确性降低。针对问题,文章提出一种基于cGAN的刀具磨损状态监测数据集增强方法。在cGAN中添加了类别条件信息,有利于生成器更好的捕捉刀具磨损样本的数据分布特点,从而生成和真实刀具磨损样本分布相似的样本。采集铣削加工过程中的振动信号,将振动信号转换成频谱数据输入到c GAN中,cGAN通过生成器和鉴别器之间的对抗训练,学习数据分布特点,生成刀具磨损状态样本数据。将增强的数据集输入到深度学习网络模型中进行分类,测试生成数据的可用性。实验结果显示,由增强的刀具磨损状态数据集训练深度学习网络模型,可以有效提高模型对刀具磨损状态监测的准确性,其预测精度达到98.1%。 展开更多
关键词 条件生成对抗网络 刀具磨损 数据增强 深度学习
下载PDF
一种基于CGAN+CNN的水声通信信号调制识别方法 被引量:6
14
作者 王彬 王海旺 李勇斌 《信息工程大学学报》 2021年第1期1-7,共7页
为提高复杂海洋环境下水声通信信号调制识别的性能和实用性,提出一种基于条件生成对抗网络和卷积神经网络的调制识别方法。首先,构造一种基于条件生成对抗网络的降噪模块,用于降低海洋环境噪声对通信信号调制特征的影响;然后,采用卷积... 为提高复杂海洋环境下水声通信信号调制识别的性能和实用性,提出一种基于条件生成对抗网络和卷积神经网络的调制识别方法。首先,构造一种基于条件生成对抗网络的降噪模块,用于降低海洋环境噪声对通信信号调制特征的影响;然后,采用卷积神经网络完成降噪数据的特征提取和分类识别;同时,利用数据迁移思想构造迁移学习训练数据集,并通过两步迁移学习策略解决目标水域信道下训练数据不足的问题。仿真实验和实际信号测试结果验证了算法的有效性,相比现有方法,低信噪比下的识别率明显提升,在目标水域信道小样本条件下也具有较好的识别性能。 展开更多
关键词 调制识别 条件生成对抗网 卷积神经网络 降噪 数据迁移
下载PDF
不均衡数据情形的基于聚焦损失的CGAN的集成分类方法
15
作者 崔文泉 余厚莹 侯晓天 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第7期968-976,共9页
针对非均衡数据的情形,基于条件生成对抗网络(conditional generative adversarial networks,CGAN),利用梯度提升树研究了聚焦损失的CGAN的集成分类方法.该方法首先通过CGAN降低不均衡率,通过聚焦损失的权值均衡结合GBDT算法,适当增加... 针对非均衡数据的情形,基于条件生成对抗网络(conditional generative adversarial networks,CGAN),利用梯度提升树研究了聚焦损失的CGAN的集成分类方法.该方法首先通过CGAN降低不均衡率,通过聚焦损失的权值均衡结合GBDT算法,适当增加对少数类样本的关注度进而进一步提升分类器的分类性能.对方法的性质进行了研究,获得了若干理论成果.证明了:在一定条件下,由CGAN产生的经验条件分布收敛于相应总体的条件分布;聚集损失的CGAN方法其经验风险收敛到期望风险;该方法的估计量会收敛到使得期望风险最小化的函数.实验结果显示了聚焦损失的CGAN方法具有良好的表现. 展开更多
关键词 非均衡数据 条件生成对抗网络 聚焦损失 集成学习
下载PDF
基于改进CGAN的电力系统暂态稳定评估样本增强方法 被引量:48
16
作者 谭本东 杨军 +3 位作者 赖秋频 谢培元 李军 徐箭 《电力系统自动化》 EI CSCD 北大核心 2019年第1期149-157,共9页
基于数据驱动的暂态稳定评估方法已成为电网安全领域研究的重点,由于实际电力系统中暂态失稳情况极少,给通过数据挖掘方法判断失稳情况带来了极大困难。针对这个问题,提出了一种用于暂态稳定评估中失稳样本合成的数据增强方法,对条件生... 基于数据驱动的暂态稳定评估方法已成为电网安全领域研究的重点,由于实际电力系统中暂态失稳情况极少,给通过数据挖掘方法判断失稳情况带来了极大困难。针对这个问题,提出了一种用于暂态稳定评估中失稳样本合成的数据增强方法,对条件生成对抗神经网络(CGAN)训练方法的适应性进行改进以提高其学习稳定性,在离线训练时利用改进CGAN交替训练生成器和判别器,学习电力系统暂态数据的分布特性,然后采用极限学习机(ELM)分类器筛选出改进CGAN所生成的多组样本中G-mean值最高的生成样本,将其中失稳样本对原始失稳样本进行增强,最后用增强后的原始样本训练分类器,实现在线暂态稳定评估。仿真结果表明,所提出的样本数据增强方法通过改进CGAN实现对原始数据分布特征的有效学习,进而提升暂态稳定评估的正确率,具有抗噪声干扰性强、对高维数据鲁棒性好的优点,能够有效平衡电力系统失稳数据。 展开更多
关键词 电力系统 暂态稳定评估 数据增强 条件生成对抗神经网络 G-mean值
下载PDF
基于CGAN的中国山水画布局可调的仿真生成方法 被引量:7
17
作者 顾杨 陈昭炯 +1 位作者 陈灿 叶东毅 《模式识别与人工智能》 EI CSCD 北大核心 2019年第9期844-854,共11页
以往的山水画计算机仿真由于未从山水画整体布局的角度进行研究,难以实现完整的画作生成.针对上述问题,文中提出布局引导、可实现完整画作生成的中国山水画仿真方法.基于山水画的绘制特点设计可行的布局标签图结构,用于表达山水画的构... 以往的山水画计算机仿真由于未从山水画整体布局的角度进行研究,难以实现完整的画作生成.针对上述问题,文中提出布局引导、可实现完整画作生成的中国山水画仿真方法.基于山水画的绘制特点设计可行的布局标签图结构,用于表达山水画的构图形态和要素.借鉴条件生成对抗网络(CGAN)的思想,针对山水画的布局和笔触特点,设计并训练多尺度特征融合的网络结构(MSFF-CGAN),实现布局标签图到仿真山水画这一异质生成过程.同时针对网络训练过程中布局标签图数据稀缺的问题,采用语义关联的颜色像素聚类算法快速生成标签图.为了提高生成图的艺术真实感,引入MemNet超分辨网络增强生成图的纹理细节.实验表明,文中方法生成的仿真山水画具有较好的完整性和艺术真实感,不仅可以应对简单的手绘涂鸦式草图,还可以通过在布局空间的编辑操作,达到对画作空间进行编辑的效果. 展开更多
关键词 中国山水画仿真 布局可调 布局标签图 条件生成对抗网络(cgan) 图像修复超分辨网络(MemNet)
下载PDF
基于BcGAN的水下图像增强方法 被引量:2
18
作者 李耀 于腾 杨国为 《计算机工程与设计》 北大核心 2022年第11期3195-3201,共7页
针对目前水下图像增强的结果中存在雾度残留以及细节模糊的问题,提出一种基于条件生成对抗网络(cGAN)的Boosting水下图像增强方法 (BcGAN)。在编码器-解码器结构的基础上引入SOSboosting策略得到增强生成器,实现对图像特征的逐步细化;... 针对目前水下图像增强的结果中存在雾度残留以及细节模糊的问题,提出一种基于条件生成对抗网络(cGAN)的Boosting水下图像增强方法 (BcGAN)。在编码器-解码器结构的基础上引入SOSboosting策略得到增强生成器,实现对图像特征的逐步细化;提出双重判别器结构,实现对多尺度输入的判别,以WGAN-GP损失为主导构建双重判别器的联合训练损失函数。实验结果表明,相比最新的深度学习水下图像增强方法,所提方法的结构相似性(SSIM)值提升了7.15%,峰值信噪比(PSNR)值提升了45.46%,该方法能够有效减少水下图像的雾度残留并增强图像细节。 展开更多
关键词 深度学习 水下图像增强 条件生成对抗网络 SOS boosting策略 多尺度
下载PDF
基于改进CGANs的入侵检测方法研究 被引量:4
19
作者 彭中联 万巍 +1 位作者 荆涛 魏金侠 《信息网络安全》 CSCD 北大核心 2020年第5期47-56,共10页
近年来,机器学习算法在入侵检测系统(IDS)中的应用获得越来越多的关注。然而,传统的机器学习算法更多的依赖于已知样本,因此需要尽可能多的数据样本来对模型进行训练。遗憾地是,随着越来越多未知攻击的出现,且用于训练的攻击样本具有不... 近年来,机器学习算法在入侵检测系统(IDS)中的应用获得越来越多的关注。然而,传统的机器学习算法更多的依赖于已知样本,因此需要尽可能多的数据样本来对模型进行训练。遗憾地是,随着越来越多未知攻击的出现,且用于训练的攻击样本具有不平衡性,传统的机器学习模型会遇到瓶颈。文章提出一种将改进后的条件生成对抗网络(CGANs)与深度神经网络(DNN)相结合的入侵检测模型(CGANs-DNN),通过解决样本不平衡性问题来提高检测模型对未知攻击类型或只有少数攻击样本类型的检测率。深度神经网络(DNN)具有表征数据潜在特征的能力,而经过改进后的条件CGANs,能够通过学习已知攻击样本潜在数据特征分布,来根据指定类型生成新的攻击样本。此外,与生成对抗网络(GANs)和变分自编码器(VAE)等无监督生成模型相比,CGANsDNN经过改进后加入梯度惩罚项,在训练的稳定性上有了很大地提升。通过NSL-KDD数据集对模型进行评估,与传统算法相比CGANs-DNN不仅在整体准确率、召回率和误报率等方面有更好的性能,而且对未知攻击和只有少数样本的攻击类型具有较高的检测率。 展开更多
关键词 入侵检测 生成对抗网络 条件GAN
下载PDF
基于1DC-CGAN和小波能量特征的引信小样本地形目标识别 被引量:3
20
作者 李晓雄 张淑宁 +1 位作者 赵惠昌 陈思 《兵工学报》 EI CAS CSCD 北大核心 2022年第10期2545-2553,共9页
无载波超宽带引信由于具有定距精度高、抗截获能力强、穿透性好、有一定反隐身能力等特点,在多个弹药平台上得到应用。在对地面目标作用时,不同地形会影响引信炸高,从而影响毁伤效果。首次提出将无载波超宽带引信用于地形识别,为引信自... 无载波超宽带引信由于具有定距精度高、抗截获能力强、穿透性好、有一定反隐身能力等特点,在多个弹药平台上得到应用。在对地面目标作用时,不同地形会影响引信炸高,从而影响毁伤效果。首次提出将无载波超宽带引信用于地形识别,为引信自适应确定最佳炸高提供先决条件。地形回波的采集周期长、成本高,获取回波的数量往往较少,这会影响识别精度。为扩充数据集,提出一种改进的条件生成对抗网络,将生成器和判别器的全连接层替换为一维卷积同时增加批标准化,在实现信号生成的同时减小模式崩溃问题发生的概率,提升了小样本条件下的序列生成效果。将扩充回波信号的小波能量特征作为输入特征,利用粒子群优化的反向传播(PSO-BP)神经网络实现地形智能分类。实验结果表明:相比在原始训练集上训练,扩充训练集上训练的PSO-BP神经网络在测试集上取得了4%以上的准确率提升。 展开更多
关键词 无载波超宽带 地形识别 小波能量特征 条件生成对抗网络 反向传播神经网络 粒子群优化算法
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部