期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gravitation, Density Upper Limit and Quantization of Space
1
作者 Doron Kwiat 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期534-545,共12页
The singularity at distance r → 0 at the center of a spherically symmetric non-rotating, uncharged mass of radius R, is considered here. Under inverse square law force, the Schwarzschild metric, needs to be modified,... The singularity at distance r → 0 at the center of a spherically symmetric non-rotating, uncharged mass of radius R, is considered here. Under inverse square law force, the Schwarzschild metric, needs to be modified, to include Newton’s Shell Theorem (NST). By including NST for r, both Schwarzschild singularity at r = 2GM/c2 and at r → 0 singularities are removed from the metric. Near R → 0, the question of maximal density is considered based on Schwarzschild’s modified metric, and compared to the quantum limit of maximal mass density put by Planck’s quantum-based universal units. It is asserted, that General relativity, when combined with Planck’s universal units, inevitably leads to quantization of gravity. 展开更多
关键词 GRAVITATION shell Theorem sINGULARITY schwarzschild Radius cgh physics: planck’s scale
下载PDF
Quantum Gravity and Dark Energy Using Fractal Planck Scaling 被引量:3
2
作者 L. Marek Crnjac M. S. El Naschie 《Journal of Modern Physics》 2013年第11期31-38,共8页
Following an inspiring idea due to D. Gross, we arrive at a topological Planck energy Ep and a corresponding topological Planck length effectively scaling the Planck scale from esoterically large and equally esoterica... Following an inspiring idea due to D. Gross, we arrive at a topological Planck energy Ep and a corresponding topological Planck length effectively scaling the Planck scale from esoterically large and equally esoterically small numbers to a manageably where P(H) is the famous Hardy’s probability for quantum entanglement which amounts to almost 9 percent and Based on these results, we conclude the equivalence of Einstein-Rosen “wormhole” bridges and Einstein’s Podolsky-Rosen’s spooky action at a distance. In turn these results are shown to be consistent with distinguishing two energy components which results in , namely the quantum zero set particle component which we can measure and the quantum empty set wave component which we cannot measure , i.e. the missing dark energy. Together the two components add to where E is the total energy, m is the mass and c is the speed of light. In other words, the present new derivation of the world’s most celebrated formula explains in one stroke the two most puzzling problems of quantum physics and relativistic cosmology, namely the physicomathematical meaning of the wave function and the nature of dark energy. In essence they are one and the same when looked upon from the view point of quantum-fractal geometry. 展开更多
关键词 sCALING the planck scale Quantum Entanglement Dark ENERGY KALUZA-KLEIN space-Time Worm HOLE Action at a Distance Unruh Temperature Hawking’s Negative ENERGY Black HOLE physics Cantorian Geometry Fractals in physics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部