As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor Os...As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor OsbZIP01,which can suppress the expression of SD1 and regulate gibberellin(GA)biosynthesis in rice.Knockout mutants of OsbZIP01 exhibited increased plant height,while the overexpression lines showed a semi-dwarf phenotype and diminished germination rate.Furthermore,the semi-dwarf phenotype of OE-bZIP01,was caused by the reduced internode length,which was accompanied by a thin stem width.The predominant expression of OsbZIP01 was observed in leaves and sheaths.OsbZIP01 protein was localized in the nucleus and showed transcriptional repression activity.In addition,OsbZIP01 could directly bind to the promoter of the OsSD1 gene,and inhibit its transcription.The semi-dwarf phenotype of OE-bZIP01 could be rescued by exogenous GA_(3).Meanwhile,the bzip01 sd1 double mutant showed a shorter shoot length compared with the wild type,indicating that OsbZIP01 regulated plant growth mainly through the GA biosynthesis pathway.Collectively,OsbZIP01 negatively regulates GA biosynthesis by restraining SD1 transcription,thereby affecting plant growth and development.展开更多
Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but als...Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology.展开更多
基金supported by the National Natural Science Foundation of China (No. 52171119)the Natural Science Foundation of Jiangsu Province, China (No. BK20201308)。
基金supported by the National Natural Science Foundation of China(Grant No.32101763)China National Postdoctoral Program for Innovative Talents(Grant No.BX2021266)China Postdoctoral Science Foundation(Grant No.2021M692853).
文摘As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor OsbZIP01,which can suppress the expression of SD1 and regulate gibberellin(GA)biosynthesis in rice.Knockout mutants of OsbZIP01 exhibited increased plant height,while the overexpression lines showed a semi-dwarf phenotype and diminished germination rate.Furthermore,the semi-dwarf phenotype of OE-bZIP01,was caused by the reduced internode length,which was accompanied by a thin stem width.The predominant expression of OsbZIP01 was observed in leaves and sheaths.OsbZIP01 protein was localized in the nucleus and showed transcriptional repression activity.In addition,OsbZIP01 could directly bind to the promoter of the OsSD1 gene,and inhibit its transcription.The semi-dwarf phenotype of OE-bZIP01 could be rescued by exogenous GA_(3).Meanwhile,the bzip01 sd1 double mutant showed a shorter shoot length compared with the wild type,indicating that OsbZIP01 regulated plant growth mainly through the GA biosynthesis pathway.Collectively,OsbZIP01 negatively regulates GA biosynthesis by restraining SD1 transcription,thereby affecting plant growth and development.
基金This work was supported by an award from the Department of Science and Technology of Jilin Province(20210402043GH and 20210204063YY).
文摘Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology.