NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exh...NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).展开更多
We re-evaluate the Raman spectroscopic quantification of the molar ratio and pressure for CH4–CO2 mixtures.Firstly,the Raman quantification factors of CH4 and CO2 increase with rising pressure at room temperature,ind...We re-evaluate the Raman spectroscopic quantification of the molar ratio and pressure for CH4–CO2 mixtures.Firstly,the Raman quantification factors of CH4 and CO2 increase with rising pressure at room temperature,indicating that Raman quantification of CH4/CO2 molar ratio can be applied to those fluid inclusions(FIs)with high internal pressure(i.e.,>15 MPa).Secondly,the v1(CH4)peak position shifts to lower wavenumber with increasing pressure at constant temperature,confirming that the v1(CH4)peak position can be used to calculate the fluid pressure.However,this method should be carefully calibrated before applying to FI analyses because large discrepancies exist among the reported v1(CH4)-P curves,especially in the highpressure range.These calibrations are applied to CH4-rich FIs in quartz veins of the Silurian Longmaxi black shales in southern Sichuan Basin.The vapor phases of these FIs are mainly composed of CH4 and minor CO2,with CO2 molar fractions from4.4%to 7.4%.The pressure of single-phase gas FI ranges from 103.65 to 128.35 MPa at room temperature,which is higher than previously reported.Thermodynamic calculations supported the presence of extremely high-pressure CH4-saturated fluid(218.03–256.82 MPa at 200°C),which may be responsible for the expulsion of CH4 to adjacent reservoirs.展开更多
The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents in...The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2.展开更多
Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used...Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used and the avalanche of electrons is taken into account in this simulation. The average energy distribution of electrons and the space distribution of effective species such as CH3, CH+3, CH+ and H at various gas pressures are given in this paper, and optimum experimental conditions are inferred from these results.展开更多
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was ...Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.展开更多
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n...Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.展开更多
A cleaner and eco-friendly method was developed for the preparation of tetrakis(aminomethyl)calix-[4]-resorcinarene via a synthetic pathway of five steps starting from methylresorcinol. This alternative methodology is...A cleaner and eco-friendly method was developed for the preparation of tetrakis(aminomethyl)calix-[4]-resorcinarene via a synthetic pathway of five steps starting from methylresorcinol. This alternative methodology is firstly based on avoiding the use of CH2BrCl, which is a non-eco-friendly substance with high ozone depletion potential, and on replacing it by CH2Cl2 as a readily available reagent with much less dangerous effects. Secondly, this method engages acetone or CH2Cl2 as the solvent of the bromination step in the place of the very toxic CCl4, leading to tetrakis(bromomethyl)calix-[4]-resorcinarene. The brominated intermediate has been reacted with sodium azide in acetone instead of the high-boiling solvent DMSO to produce tetrakis(azidomethyl) calix-[4]-resorcinarene without the need of tedious purification. Lastly, this work reports an efficient hydrogenation method of the versatile azido adduct employing Pt/C (5%) as the catalyst for the preparation of the amino cavitand as an alternative route with high atom economy that can replace the classical methods used currently.展开更多
Methane(CH4)is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM)using photocatalysts can realize the production of syngas(CO+H2)with low energy...Methane(CH4)is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM)using photocatalysts can realize the production of syngas(CO+H2)with low energy consumption.In this work,Ag0/Ag+-loaded SrTi03 nanocomposites were successfully prepared through a photodeposition method.When the loading amount of Ag is 0.5 mol%,the atom ratio of Ag+to Ag0 was found to be 51:49.In this case,a synergistic effect of Ago and Ag+was observed,in which Ago was proposed to improve the adsorption of H2 O to produce hydroxyl radicals and enhance the utilization of light energy as well as the separation of charge carriers.Meanwhile,Ag0 was regarded as the reduction reaction site with the function of an electron trapping agent.In addition,Ag+adsorbed the CH4 molecules and acted as the oxidation reaction sites in the process of photocatalytic SRM to further promote electron-hole separation.As a result,0.5 mol%Ag-SrTi03 exhibited enhancement of photocatalytic activity for SRM with the highest CO production rate of 4.3μmol g-1 h-1,which is ca.5 times higher than that of pure SrTi03.This work provides a facile route to fabricate nanocomposite with cocatalyst featuring different functions in promoting photocatalytic activity for SRM.展开更多
基金support from the National Natural Science Foundation of China(52201255)the Natural Science Foundation of Jiangsu Province(BK20210884)the Innovation,and Entrepreneurship Program of Jiangsu Province(JSSCBS20211007).
文摘NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41922023 and 41830425)the Fundamental Research Funds for the Central Universities(Grant Nos.020614380056 and 020614380078).
文摘We re-evaluate the Raman spectroscopic quantification of the molar ratio and pressure for CH4–CO2 mixtures.Firstly,the Raman quantification factors of CH4 and CO2 increase with rising pressure at room temperature,indicating that Raman quantification of CH4/CO2 molar ratio can be applied to those fluid inclusions(FIs)with high internal pressure(i.e.,>15 MPa).Secondly,the v1(CH4)peak position shifts to lower wavenumber with increasing pressure at constant temperature,confirming that the v1(CH4)peak position can be used to calculate the fluid pressure.However,this method should be carefully calibrated before applying to FI analyses because large discrepancies exist among the reported v1(CH4)-P curves,especially in the highpressure range.These calibrations are applied to CH4-rich FIs in quartz veins of the Silurian Longmaxi black shales in southern Sichuan Basin.The vapor phases of these FIs are mainly composed of CH4 and minor CO2,with CO2 molar fractions from4.4%to 7.4%.The pressure of single-phase gas FI ranges from 103.65 to 128.35 MPa at room temperature,which is higher than previously reported.Thermodynamic calculations supported the presence of extremely high-pressure CH4-saturated fluid(218.03–256.82 MPa at 200°C),which may be responsible for the expulsion of CH4 to adjacent reservoirs.
文摘The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2.
基金This work was supported by Doctor Foundation of Hebei Education Committee Hebei Natural Science Foundation(599091 ) of China
文摘Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used and the avalanche of electrons is taken into account in this simulation. The average energy distribution of electrons and the space distribution of effective species such as CH3, CH+3, CH+ and H at various gas pressures are given in this paper, and optimum experimental conditions are inferred from these results.
文摘Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.
基金financial support of Research Institute of Petroleum Industry
文摘Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.
文摘A cleaner and eco-friendly method was developed for the preparation of tetrakis(aminomethyl)calix-[4]-resorcinarene via a synthetic pathway of five steps starting from methylresorcinol. This alternative methodology is firstly based on avoiding the use of CH2BrCl, which is a non-eco-friendly substance with high ozone depletion potential, and on replacing it by CH2Cl2 as a readily available reagent with much less dangerous effects. Secondly, this method engages acetone or CH2Cl2 as the solvent of the bromination step in the place of the very toxic CCl4, leading to tetrakis(bromomethyl)calix-[4]-resorcinarene. The brominated intermediate has been reacted with sodium azide in acetone instead of the high-boiling solvent DMSO to produce tetrakis(azidomethyl) calix-[4]-resorcinarene without the need of tedious purification. Lastly, this work reports an efficient hydrogenation method of the versatile azido adduct employing Pt/C (5%) as the catalyst for the preparation of the amino cavitand as an alternative route with high atom economy that can replace the classical methods used currently.
基金financial support from the Sichuan Provincial International Cooperation Project(Nos.2017HH0030,2019YFH0164)the National Natural Science Foundation of China(No.21403172)。
文摘Methane(CH4)is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM)using photocatalysts can realize the production of syngas(CO+H2)with low energy consumption.In this work,Ag0/Ag+-loaded SrTi03 nanocomposites were successfully prepared through a photodeposition method.When the loading amount of Ag is 0.5 mol%,the atom ratio of Ag+to Ag0 was found to be 51:49.In this case,a synergistic effect of Ago and Ag+was observed,in which Ago was proposed to improve the adsorption of H2 O to produce hydroxyl radicals and enhance the utilization of light energy as well as the separation of charge carriers.Meanwhile,Ag0 was regarded as the reduction reaction site with the function of an electron trapping agent.In addition,Ag+adsorbed the CH4 molecules and acted as the oxidation reaction sites in the process of photocatalytic SRM to further promote electron-hole separation.As a result,0.5 mol%Ag-SrTi03 exhibited enhancement of photocatalytic activity for SRM with the highest CO production rate of 4.3μmol g-1 h-1,which is ca.5 times higher than that of pure SrTi03.This work provides a facile route to fabricate nanocomposite with cocatalyst featuring different functions in promoting photocatalytic activity for SRM.