为提升瓦斯抽采利用率、促进煤矿安全生产,采用介质阻挡放电(DBD)试验系统对CH4-O2-N2-H2O反应体系进行低温等离子体转化研究,分析水蒸气与CH4物质的量比、O2/N2物质的量比、放电电压、放电频率,以及气体总流量对CH4转化率及主要产物产...为提升瓦斯抽采利用率、促进煤矿安全生产,采用介质阻挡放电(DBD)试验系统对CH4-O2-N2-H2O反应体系进行低温等离子体转化研究,分析水蒸气与CH4物质的量比、O2/N2物质的量比、放电电压、放电频率,以及气体总流量对CH4转化率及主要产物产率的影响。结果表明:CH4-O2-N2-H2O反应体系DBD的主要产物为H2、CO、CO2、C2H2、C2H4、C2H6和CH3OH;反应参数对CH4转化率和H2、CO、CO2、C2H6、CH3OH产率影响较为显著,而对C2H2、C2H4产率影响不显著;CH4转化率及主要产物产率均在放电频率为9.8 k Hz时取得最大值。展开更多
Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation ...Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.展开更多
文摘为提升瓦斯抽采利用率、促进煤矿安全生产,采用介质阻挡放电(DBD)试验系统对CH4-O2-N2-H2O反应体系进行低温等离子体转化研究,分析水蒸气与CH4物质的量比、O2/N2物质的量比、放电电压、放电频率,以及气体总流量对CH4转化率及主要产物产率的影响。结果表明:CH4-O2-N2-H2O反应体系DBD的主要产物为H2、CO、CO2、C2H2、C2H4、C2H6和CH3OH;反应参数对CH4转化率和H2、CO、CO2、C2H6、CH3OH产率影响较为显著,而对C2H2、C2H4产率影响不显著;CH4转化率及主要产物产率均在放电频率为9.8 k Hz时取得最大值。
基金Supported by the state Key Development Program for Basic Research of China (2003CB615707) and the National Natural Science Foundation of China (20736005).
文摘Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.