To understand influence of litters on the emission/absorption of CO2, N2O and CH4 in broadleaved/Korean pine forest in Changbai Mountain, fluxes of soil CO2, N2O and CH4 were measured by closed static chamber techniqu...To understand influence of litters on the emission/absorption of CO2, N2O and CH4 in broadleaved/Korean pine forest in Changbai Mountain, fluxes of soil CO2, N2O and CH4 were measured by closed static chamber technique, from Sept 3, 2002 to Oct 30, 2003 in two types of soil ecosystems, of which one was covered with litters on the surface soil, and the other had no litters. The results showed that litters had significant influences on CO2, N2O and CH4 fluxes (p<0.05). Their diurnal change patterns of plot with litters and litter-free plot were similar, and they all showed emission/absorption peak at 18:00. The diurnal change fluxes of CO2 and N2O of plot with litters were significantly higher than those of the litter-free plot, while the diurnal flux of CH4 of plot with litters was lower than that of litter-free plot. The fluxes of CO2, N2O, and CH4 showed the similar seasonal patternsfor both plots. The fluxes of CO2, CH4 showed their peak fluxes in June, but the fluxes of N2O showed its peak emissions in August. The annual fluxes of CO2 and N2O of plot with litters were significantly higher than those of the litter-free plot, while the annual flux of CH4 of plot with litters was lower than that of litter-free plot. Keywords Flux - CO2, N2O and CH4 - Seasonal variation - Diurnal variation CLC number S718.5 Document code A Foundation item: The study was supported by innovation research project of Institute of Appiied Ecology, Chinese Academy of Sciences (SCXZD0101-02) and National Natural Science Foundation of China (30271068)Bigraphy: XIAO Dong-mei (1979-), female, master of Institute of Applied Ecology. Chinese Academy of Sciences, Shenyang 110016. P. R. China.Responsible editor: Song Funan展开更多
Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment w...Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha-1 year-1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha-1 year-1) did not significantly affect soil CH4 and N20 fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha-1 year-1) significantly increased soil NO3-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3--N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.展开更多
基金The study was supported by innovation research project of Institute of Applied Ecology Chinese Academy of Sciences (SCXZD0101-02) and National Natural Science Foundation of China (302
文摘To understand influence of litters on the emission/absorption of CO2, N2O and CH4 in broadleaved/Korean pine forest in Changbai Mountain, fluxes of soil CO2, N2O and CH4 were measured by closed static chamber technique, from Sept 3, 2002 to Oct 30, 2003 in two types of soil ecosystems, of which one was covered with litters on the surface soil, and the other had no litters. The results showed that litters had significant influences on CO2, N2O and CH4 fluxes (p<0.05). Their diurnal change patterns of plot with litters and litter-free plot were similar, and they all showed emission/absorption peak at 18:00. The diurnal change fluxes of CO2 and N2O of plot with litters were significantly higher than those of the litter-free plot, while the diurnal flux of CH4 of plot with litters was lower than that of litter-free plot. The fluxes of CO2, N2O, and CH4 showed the similar seasonal patternsfor both plots. The fluxes of CO2, CH4 showed their peak fluxes in June, but the fluxes of N2O showed its peak emissions in August. The annual fluxes of CO2 and N2O of plot with litters were significantly higher than those of the litter-free plot, while the annual flux of CH4 of plot with litters was lower than that of litter-free plot. Keywords Flux - CO2, N2O and CH4 - Seasonal variation - Diurnal variation CLC number S718.5 Document code A Foundation item: The study was supported by innovation research project of Institute of Appiied Ecology, Chinese Academy of Sciences (SCXZD0101-02) and National Natural Science Foundation of China (30271068)Bigraphy: XIAO Dong-mei (1979-), female, master of Institute of Applied Ecology. Chinese Academy of Sciences, Shenyang 110016. P. R. China.Responsible editor: Song Funan
基金supported by the National Natural Science Foundation of China (No. 31300375)the National Non-Profit Institute Research Grant of the Chinese Academy of Agricultural Sciences (No. BSRF201505)the Key Project of the National Scientific and Technical Support Program, China (No. 2013BAC03B03)
文摘Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha-1 year-1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha-1 year-1) did not significantly affect soil CH4 and N20 fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha-1 year-1) significantly increased soil NO3-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3--N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.