The concentrations of CH4 in the atmosphere over the past 2000 years have been deduced by extracting and analyzing the air in bubbles embedded in the Dasuopu ice core, Qing-hai-Tibetan Plateau. Upon analyzing 57 ice c...The concentrations of CH4 in the atmosphere over the past 2000 years have been deduced by extracting and analyzing the air in bubbles embedded in the Dasuopu ice core, Qing-hai-Tibetan Plateau. Upon analyzing 57 ice core samples we found that the concentration of CH4 200 years ago and earlier was 0.85 μ mol· mol-1 or about 40% of present atmospheric CH4 levels over Qinghai-Tibetan Plateau. A rapid and significant increase of atmospheric CH4 started about 200–250 a ago. For a given age before 19th century, the Dasuopu CH4 concentrations were about 15%-20% higher than those in Antarctic and Greenland references. It was also found that the Dasuopu CH4 concentrations changed more frequently, and its fluctuations could reflect the temperature change sensitively.展开更多
基金the National Natural Science Foundation of China (Grant No.49671021), the National Key Project for Basic Research (Grant No. KZ951-A1-204), CAS Project for Tibetan Research Project (Grant No. KZ95-T-06) and Innovation Project of Cold and Arid Regions E
文摘The concentrations of CH4 in the atmosphere over the past 2000 years have been deduced by extracting and analyzing the air in bubbles embedded in the Dasuopu ice core, Qing-hai-Tibetan Plateau. Upon analyzing 57 ice core samples we found that the concentration of CH4 200 years ago and earlier was 0.85 μ mol· mol-1 or about 40% of present atmospheric CH4 levels over Qinghai-Tibetan Plateau. A rapid and significant increase of atmospheric CH4 started about 200–250 a ago. For a given age before 19th century, the Dasuopu CH4 concentrations were about 15%-20% higher than those in Antarctic and Greenland references. It was also found that the Dasuopu CH4 concentrations changed more frequently, and its fluctuations could reflect the temperature change sensitively.