A. Peres constructed an example of particles entangled in the state of spin singlet. He claimed to have obtained the CHSH inequality and concluded that the violation of this inequality shows that in a measurement in w...A. Peres constructed an example of particles entangled in the state of spin singlet. He claimed to have obtained the CHSH inequality and concluded that the violation of this inequality shows that in a measurement in which some variables are tested, other variables, not tested, have no defined value. In the present paper is proved that the correct conclusion of the violation of the CHSH inequality is different. It is proved that the classical calculus of probabilities of test results, obeying the Kolmogorov axioms, is unfit for the quantum formalism, dominated by probability amplitudes.展开更多
In this paper, we report the observation and characterisation of a systematic error in the implementation of <em>U</em><sub>3</sub> gates in the IBM quantum computers. By measuring the effect o...In this paper, we report the observation and characterisation of a systematic error in the implementation of <em>U</em><sub>3</sub> gates in the IBM quantum computers. By measuring the effect of this gate for various rotation angles the error appears as an over-rotation, whose magnitude does not correlate with IBM’s cited errors calculated using Clifford randomized benchmarking. We propose a simple mitigation procedure to limit the effects of this error. We show that using a simple mitigation strategy one can obtain improved results in the observed value for the CHSH inequality, measured in a cloud-based quantum computer. This work highlights the utility of simple mitigation strategies for short-depth quantum circuits.展开更多
文摘A. Peres constructed an example of particles entangled in the state of spin singlet. He claimed to have obtained the CHSH inequality and concluded that the violation of this inequality shows that in a measurement in which some variables are tested, other variables, not tested, have no defined value. In the present paper is proved that the correct conclusion of the violation of the CHSH inequality is different. It is proved that the classical calculus of probabilities of test results, obeying the Kolmogorov axioms, is unfit for the quantum formalism, dominated by probability amplitudes.
文摘In this paper, we report the observation and characterisation of a systematic error in the implementation of <em>U</em><sub>3</sub> gates in the IBM quantum computers. By measuring the effect of this gate for various rotation angles the error appears as an over-rotation, whose magnitude does not correlate with IBM’s cited errors calculated using Clifford randomized benchmarking. We propose a simple mitigation procedure to limit the effects of this error. We show that using a simple mitigation strategy one can obtain improved results in the observed value for the CHSH inequality, measured in a cloud-based quantum computer. This work highlights the utility of simple mitigation strategies for short-depth quantum circuits.