The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a s...The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.展开更多
The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 ...The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.展开更多
Developed regions of the world represent a major atmospheric methane(CH_4) source,but these regional emissions remain poorly constrained.The Yangtze River Delta(YRD) region of China is densely populated(about 16% of C...Developed regions of the world represent a major atmospheric methane(CH_4) source,but these regional emissions remain poorly constrained.The Yangtze River Delta(YRD) region of China is densely populated(about 16% of China's total population) and consists of large anthropogenic and natural CH_4 sources.Here,atmospheric CH_4 concentrations measured at a 70-m tall tower in the YRD are combined with a scale factor Bayesian inverse(SFBI) modeling approach to constrain seasonal variations in CH_4 emissions.Results indicate that in 2018 agricultural soils(AGS,rice production) were the main driver of seasonal variability in atmospheric CH_4 concentration.There was an underestimation of emissions from AGS in the a priori inventories(EDGAR—Emissions Database for Global Atmospheric Research v432 or v50),especially during the growing seasons.Posteriori CH_4 emissions from AGS accounted for 39%(4.58 Tg,EDGAR v432) to 47%(5.21 Tg,EDGAR v50) of the total CH_4 emissions.The posteriori natural emissions(including wetlands and water bodies) were1.21 Tg and 1.06 Tg,accounting for 10.1%(EDGAR v432) and 9.5%(EDGAR v50) of total emissions in the YRD in2018.Results show that the dominant factor for seasonal variations in atmospheric concentration in the YRD was AGS,followed by natural sources.In summer,AGS contributed 42%(EDGAR v432) to 64%(EDGAR v50) of the CH_4 concentration enhancement while natural sources only contributed about 10%(EDGAR v50) to 15%(EDGAR v432).In addition,the newer version of the EDGAR product(EDGAR v50) provided more reasonable seasonal distribution of CH_4 emissions from rice cultivation than the old version(EDGAR v432).展开更多
Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for a...Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.展开更多
基金supported by the National Natural Science Foundation of China(22006044,22006043)External Cooperation Program of Science and Technology Planning of Fujian Province(2023I0018)+2 种基金the Fujian Province Science and Technology Program Funds(2020H6013)the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A03)the Scientific Research Funds of Huaqiao University(605-50Y200270001)。
文摘The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.
文摘The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.
基金supported by the National Key R&D Program of China (Grant Nos.2020YFA0607501 and 2019YFA0607202 to WX)the Natural Science Foundation of Jiangsu Province (Grant No.BK20200802 to CH)the Key Laboratory of Meteorology and Ecological Environment of Hebei Province (Grant No.Z201901H to WX)。
文摘Developed regions of the world represent a major atmospheric methane(CH_4) source,but these regional emissions remain poorly constrained.The Yangtze River Delta(YRD) region of China is densely populated(about 16% of China's total population) and consists of large anthropogenic and natural CH_4 sources.Here,atmospheric CH_4 concentrations measured at a 70-m tall tower in the YRD are combined with a scale factor Bayesian inverse(SFBI) modeling approach to constrain seasonal variations in CH_4 emissions.Results indicate that in 2018 agricultural soils(AGS,rice production) were the main driver of seasonal variability in atmospheric CH_4 concentration.There was an underestimation of emissions from AGS in the a priori inventories(EDGAR—Emissions Database for Global Atmospheric Research v432 or v50),especially during the growing seasons.Posteriori CH_4 emissions from AGS accounted for 39%(4.58 Tg,EDGAR v432) to 47%(5.21 Tg,EDGAR v50) of the total CH_4 emissions.The posteriori natural emissions(including wetlands and water bodies) were1.21 Tg and 1.06 Tg,accounting for 10.1%(EDGAR v432) and 9.5%(EDGAR v50) of total emissions in the YRD in2018.Results show that the dominant factor for seasonal variations in atmospheric concentration in the YRD was AGS,followed by natural sources.In summer,AGS contributed 42%(EDGAR v432) to 64%(EDGAR v50) of the CH_4 concentration enhancement while natural sources only contributed about 10%(EDGAR v50) to 15%(EDGAR v432).In addition,the newer version of the EDGAR product(EDGAR v50) provided more reasonable seasonal distribution of CH_4 emissions from rice cultivation than the old version(EDGAR v432).
文摘Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.