低浓度煤层气的提质利用对缓解国内天然气不足的现状具有重要意义,然而煤层气中存在的氮气杂质限制了该类资源的进一步应用,进行低浓度煤层气中CH_(4)/N_(2)混合物的分离至关重要。制备了两种具有弱极性超微孔的金属有机框架材料Sc-CPM-...低浓度煤层气的提质利用对缓解国内天然气不足的现状具有重要意义,然而煤层气中存在的氮气杂质限制了该类资源的进一步应用,进行低浓度煤层气中CH_(4)/N_(2)混合物的分离至关重要。制备了两种具有弱极性超微孔的金属有机框架材料Sc-CPM-66A和In-CPM-66A,研究材料从CH_(4)/N_(2)混合物中富集CH_(4)的性能,利用PXRD、77 K N_(2)吸附、TGA和FTIR光谱对材料的结构进行了表征。IAST选择性计算表明,In-CPM-66A和Sc-CPM-66A的CH_(4)/N_(2)选择性达到6.0。受益于材料表面存在的大量的甲基基团,两种材料对CH_(4)的吸附热低于被报道的大部分材料,材料与甲烷分子之间弱的相互作用有利于吸附剂的脱附再生。穿透实验进一步表明,CPM-66A可以实现动态条件下CH_(4)/N_(2)混合物的分离,循环穿透实验显示该类材料具有良好的可重复性。展开更多
氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过...氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。展开更多
文摘低浓度煤层气的提质利用对缓解国内天然气不足的现状具有重要意义,然而煤层气中存在的氮气杂质限制了该类资源的进一步应用,进行低浓度煤层气中CH_(4)/N_(2)混合物的分离至关重要。制备了两种具有弱极性超微孔的金属有机框架材料Sc-CPM-66A和In-CPM-66A,研究材料从CH_(4)/N_(2)混合物中富集CH_(4)的性能,利用PXRD、77 K N_(2)吸附、TGA和FTIR光谱对材料的结构进行了表征。IAST选择性计算表明,In-CPM-66A和Sc-CPM-66A的CH_(4)/N_(2)选择性达到6.0。受益于材料表面存在的大量的甲基基团,两种材料对CH_(4)的吸附热低于被报道的大部分材料,材料与甲烷分子之间弱的相互作用有利于吸附剂的脱附再生。穿透实验进一步表明,CPM-66A可以实现动态条件下CH_(4)/N_(2)混合物的分离,循环穿透实验显示该类材料具有良好的可重复性。
文摘氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。