期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CO_(2)捕集及其转化技术现状与煤化工产业碳减排路径探索 被引量:3
1
作者 李春雷 《中国煤炭》 2022年第8期24-32,共9页
随着我国“双碳”目标的提出,对煤化工产业碳减排也提出了更高的要求。介绍了燃烧后CO_(2)捕集及其转化技术发展现状,根据国能榆林化工有限公司的碳排放实际,提出CO_(2)捕集及其转化一体化思路,具体是将CO_(2)微界面振荡捕集技术和CO_(2... 随着我国“双碳”目标的提出,对煤化工产业碳减排也提出了更高的要求。介绍了燃烧后CO_(2)捕集及其转化技术发展现状,根据国能榆林化工有限公司的碳排放实际,提出CO_(2)捕集及其转化一体化思路,具体是将CO_(2)微界面振荡捕集技术和CO_(2)CH_(4)重整技术相结合,实现CO_(2)低成本捕集和精准转化。“微界面振荡吸收及再生+微通道反应”捕集转化技术工艺是采用微界面振荡捕集技术对烟气中的CO_(2)进行深度吸收,进而通过再生过程获得高纯度的CO_(2),再利用CO_(2)CH_(4)重整技术将CO_(2)和CH_(4)催化转化生成H_(2)和CO,即高附加值的合成气;最后对预期的经济效益、社会效益以及示范效应进行了介绍。 展开更多
关键词 煤化工产业 CO_(2)微界面振荡捕集技术 CO_(2)ch_(4)重整技术
下载PDF
侧深施控释氮肥运筹方式对水稻产量、NH_(3)挥发和温室气体排放的影响 被引量:1
2
作者 郭松 郭慧婷 +9 位作者 张裕梁 钱紫慧 王子君 路佳明 汪源 赵灿 王维领 张洪程 杨凤萍 霍中洋 《作物学报》 CAS CSCD 北大核心 2024年第6期1525-1539,共15页
为建立机插稻高产低碳减排的控释氮肥施用技术,以迟熟中粳南粳9108、泰香粳1402为材料,选用控释期100 d、43%树脂包膜缓释氮肥与46%速效尿素为氮肥,分别设置基穗氮肥比例为100(NM1)∶、82(NM2)∶、73∶(NM3)与64(NM4)∶不同运筹方式处理... 为建立机插稻高产低碳减排的控释氮肥施用技术,以迟熟中粳南粳9108、泰香粳1402为材料,选用控释期100 d、43%树脂包膜缓释氮肥与46%速效尿素为氮肥,分别设置基穗氮肥比例为100(NM1)∶、82(NM2)∶、73∶(NM3)与64(NM4)∶不同运筹方式处理,基肥采用侧深施肥方法,控释氮肥与速效尿素比例均为55,∶穗氮肥为尿素,并设置常规施肥(FFT)与不施氮肥(0N)对照处理,研究不同氮肥运筹方式对水稻产量、NH_(3)挥发和温室气体排放的影响。结果表明:与FFT处理相比,侧深施控释氮肥推迟NH_(3)挥发峰值出现,避免分蘖期NH_(3)挥发峰值产生,穗期追施尿素后的NH_(3)挥发通量和平均NH_(3)挥发通量显著降低,NH_(3)累积损失总量降低25.33%~48.76%,NH_(3)排放系数降低29.14%~60.81%,单位产量NH_(3)排放强度显著降低29.60%~56.01%。与FFT处理相比,侧深施控释氮肥分蘖期和抽穗后的CH_(4)排放通量显著降低,搁田期和穗期追施尿素后的N_(2)O排放通量显著降低,CH_(4)排放累积总量降低20.20%~55.04%,CH_(4)减排率随基穗氮肥比例变小而降低,N_(2)O排放累积总量降低25.56%~61.56%,N_(2)O减排率表现为NM1>NM3>NM2>NM4,GWP和GHGI分别降低20.96%~53.35%、25.91%~55.40%。品种间NH_(3)挥发和温室气体规律一致,减排效果均表现为NM1>NM3>NM2>NM4。综合考虑经济、生态效益,NM1处理氨挥发和温室气体减排效果最佳,且比NM3和FFT处理减少施肥次数1~2次,利于水稻绿色轻简规模化生产;NM3处理增产率最高且NH_(3)挥发和温室气体减排效果仅次NM1,实现丰产减排协同进行。综上,本文探索出一套适配迟熟中粳减排增产的控释氮肥施肥方式,重点发现“轻简+减排”型施肥方式NM1和“丰产+减排”型施肥方式NM3。 展开更多
关键词 控释氮肥 运筹方式 NH_(3)挥发 ch_(4) N_(2)O
下载PDF
双碳战略中煤气共采技术发展路径的思考 被引量:9
3
作者 李树刚 张静非 +5 位作者 林海飞 丁洋 白杨 周雨璇 朱冰 戴政 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第1期138-153,共16页
自提出“双碳”目标以来,我国生态文明建设已进入以降碳为重点战略方向的关键时期。煤炭作为兜底能源的地位短期内不会改变,能耗“双控”向碳排放总量和强度“双控”转变的核心即为CH_(4)-CO_(2)协同减排。在精准分析碳达峰、碳中和阶... 自提出“双碳”目标以来,我国生态文明建设已进入以降碳为重点战略方向的关键时期。煤炭作为兜底能源的地位短期内不会改变,能耗“双控”向碳排放总量和强度“双控”转变的核心即为CH_(4)-CO_(2)协同减排。在精准分析碳达峰、碳中和阶段煤矿CH_(4)-CO_(2)双重碳减排面临挑战的基础上,明确了双碳战略中煤气共采技术发展需结合现状需求-技术攻关-政策驱动的核心原则,制定了双碳战略中煤气共采技术的发展路径,论述了其中的关键技术问题。碳达峰阶段,CH_(4)减排以排放源管控为基础视角,核心为瓦斯抽采-利用全周期碳减排关键技术,包含瓦斯富集区靶向精准抽采技术、低渗煤层增透及注气驱替增流抽采技术、关闭矿井瓦斯逃逸通道封堵减碳技术、瓦斯富集-提浓-利用一体化技术,目的是大幅提升高浓度瓦斯抽采-利用效率,减少低浓度及通风瓦斯碳排放;CO_(2)减排以“CCUS+生态碳汇”全域负碳排放技术为核心,包含煤层CO_(2)封存、工业固废采空区充填协同CO_(2)地质封存、煤矿碳封存区域土壤-地表-大气异常监测及生态碳汇技术,进一步吸纳烟道气或纯CO_(2)排放。碳中和阶段核心任务是实现CH_(4)-CO_(2)(近)零碳排放,CO_(2)减排应当由技术攻关示范工程转变为规模化应用阶段,并建立全生命周期煤矿CH_(4)-CO_(2)排放智能监测及动态管控技术体系,实现监测管控技术手段与碳排放环节深度匹配、碳排放监测管控云平台与煤矿全局监控系统深度对接。最后对未来煤气共采体系绿色低碳发展提出了自身见解与思考:(1)继续深化“高效精准抽采+全浓度梯级利用”煤矿CH_(4)零排放技术模式;(2)持续攻关“CO_(2)工程封存+生态碳汇”CO_(2)零排放技术体系;(3)积极探索煤矿“零碳智慧园区”综合解决方案,形成激励和倒逼并重的煤矿碳减排政策支持体系。 展开更多
关键词 双碳目标 ch_(4)-co_(2)协同 煤气共采 发展路径 绿色低碳
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部