期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Greenhouse Gas Emissions from Sewage Treatment in China during 2000-2009 被引量:1
1
作者 ZHOU Xing ZHENG You-Fei +2 位作者 KANG Na ZHOU Wei YIN Ji-Fu 《Advances in Climate Change Research》 SCIE 2012年第4期205-211,共7页
Based on the statistics from the China Statistical Yearbook (2000-2009) on environment and methods recommended by the IPCC, the amounts of greenhouse gas (GHG) emissions from domestic and industrial sewage treatme... Based on the statistics from the China Statistical Yearbook (2000-2009) on environment and methods recommended by the IPCC, the amounts of greenhouse gas (GHG) emissions from domestic and industrial sewage treatment in China are estimated for the period of 2003-2009. CO2 emissions per capita from sewage treatment plants are also analyzed. The results show that the GHG emissions from sewage treatment plants increased steadily from 2003 to 2009; N20 emissions from domestic sewage are the major source of the total GHG emissions from domestic sewage; CH4 emissions from domestic sewage increase with the greatest speed; CH4 emissions from paper and pulp industry are the major source of industrial sewage emissions; CO2 emissions per capita increase constantly from 2003 to 2009. 展开更多
关键词 sewage treatment CH4 n20 emissionS
下载PDF
Weaker Interactions in Zn^(2+)and Organic Ion-pre-intercalated Vanadium Oxide toward Highly Reversible Zinc-ion Batteries 被引量:3
2
作者 Feng Zhang Xiucai Sun +7 位作者 Min Du Xiaofei Zhang Wentao Dong Yuanhua Sang Jianjun Wang Yanlu Li Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期620-630,共11页
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet... Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability. 展开更多
关键词 [N(CH_(3))_(4) Zn]V_(8)O_(20)·3.8H_(2)O nanosheets aqueous zinc-ion battery highly reversible organic ion pre-intercalation zinc-carbon interactions
下载PDF
Warming and altered precipitation rarely alter N addition effects on soil greenhouse gas fluxes:a meta-analysis
3
作者 Xinyu Wei Fuzhong Wu +6 位作者 Koenraad Van Meerbeek Ellen Desie Xiangyin Ni Kai Yue Petr Heděnec Jing Yang Nannan An 《Ecological Processes》 SCIE EI CSCD 2023年第1期778-790,共13页
Background Changes in soil greenhouse gas(GHG)fluxes caused by nitrogen(N)addition are considered as the key factors contributing to global climate change(global warming and altered precipitation regimes),which in tur... Background Changes in soil greenhouse gas(GHG)fluxes caused by nitrogen(N)addition are considered as the key factors contributing to global climate change(global warming and altered precipitation regimes),which in turn alters the feedback between N addition and soil GHG fluxes.However,the effects of N addition on soil GHG emissions under climate change are highly variable and context-dependent,so that further syntheses are required.Here,a meta-analysis of the interactive effects of N addition and climate change(warming and altered precipitation)on the fluxes of three main soil GHGs[carbon dioxide(CO_(2)),methane(CH_(4)),and nitrous oxide(N_(2)O)]was conducted by synthesizing 2103 observations retrieved from 57 peer-reviewed articles on multiple terrestrial ecosystems globally.Results The interactive effects of N addition and climate change on GHG fluxes were generally additive.The combination of N addition and warming or altered precipitation increased N_(2)O emissions significantly while it had minimal effects on CO_(2)emissions and CH_(4)uptake,and the effects on CH_(4)emissions could not be evaluated.Moreover,the magnitude of the combined effects did not differ significantly from the effects of N addition alone.Apparently,the combined effects on CO_(2)and CH_(4)varied among ecosystem types due to differences in soil moisture,which was in contrast to the soil N_(2)O emission responses.The soil GHG flux responses to combined N addition and climate change also varied among different climatic conditions and experimental methods.Conclusion Overall,our findings indicate that the effects of N addition and climate change on soil GHG fluxes were relatively independent,i.e.combined effects of N addition and climate change were equal to or not significantly different from the sum of their respective individual effects.The effects of N addition on soil GHG fluxes influence the feedbacks between climate change and soil GHG fluxes. 展开更多
关键词 N addition WARMING Altered precipitation Global change CO_(2) emission CH_(4) uptake N_(2)O emission
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部