LetG be a finite group, andS a subset ofG \ |1| withS =S ?1. We useX = Cay(G,S) to denote the Cayley graph ofG with respect toS. We callS a Cl-subset ofG, if for any isomorphism Cay(G,S) ≈ Cay(G,T) there is an α∈ A...LetG be a finite group, andS a subset ofG \ |1| withS =S ?1. We useX = Cay(G,S) to denote the Cayley graph ofG with respect toS. We callS a Cl-subset ofG, if for any isomorphism Cay(G,S) ≈ Cay(G,T) there is an α∈ Aut(G) such thatS α =T. Assume that m is a positive integer.G is called anm-Cl-group if every subsetS ofG withS =S ?1 and | S | ≤m is Cl. In this paper we prove that the alternating groupA 5 is a 4-Cl-group, which was a conjecture posed by Li and Praeger.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 19831050 and69873002) and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 97000141) , and also by Korea Science and Engineering Foundation (Grant No. K
文摘LetG be a finite group, andS a subset ofG \ |1| withS =S ?1. We useX = Cay(G,S) to denote the Cayley graph ofG with respect toS. We callS a Cl-subset ofG, if for any isomorphism Cay(G,S) ≈ Cay(G,T) there is an α∈ Aut(G) such thatS α =T. Assume that m is a positive integer.G is called anm-Cl-group if every subsetS ofG withS =S ?1 and | S | ≤m is Cl. In this paper we prove that the alternating groupA 5 is a 4-Cl-group, which was a conjecture posed by Li and Praeger.