In this study,we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6(CICE6)to investigate the model sensitivity to two Ice-Ocean(IO)boundary condition approaches.One is the two-equatio...In this study,we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6(CICE6)to investigate the model sensitivity to two Ice-Ocean(IO)boundary condition approaches.One is the two-equation approach that treats the freezing temperature as a function of the ocean mixed layer(ML)salinity,using two equations to parametrize the IO heat exchanges.Another approach uses the salinity of the IO interface to define the actual freezing temperature,so an equation describing the salt flux at the IO interface is added to the two-equation approach,forming the so-called three-equation approach.We focus on the impact of the three-equation boundary condition on the IO heat exchange and associated basal melt/growth of the sea ice in the Arctic Ocean.Compared with the two-equation simulation,our three-equation simulation shows a reduced oceanic turbulent heat flux,weakened basal melt,increased ice thickness,and reduced sea surface temperature(SST)in the Arctic.These impacts occur mainly at the ice edge regions and manifest themselves in summer.Furthermore,in August,we observed a downward turbulent heat flux from the ice to the ocean ML in two of our three-equation sensitivity runs with a constant heat transfer coefficient(0.006),which caused heat divergence and congelation at the ice bottom.Additionally,the influence of different combinations of heat/salt transfer coefficients and thermal conductivity in the three-equation approach on the model simulated results is assessed.The results presented in this study can provide insight into sea ice model sensitivity to the three-equation IO boundary condition for coupling the CICE6 to climate models.展开更多
Long term in situ atmospheric observation of the landfast ice nearby Zhongshan Station in the Prydz Bay was performed from April to November 2016. The in situ observation, including the conventional meteorological ele...Long term in situ atmospheric observation of the landfast ice nearby Zhongshan Station in the Prydz Bay was performed from April to November 2016. The in situ observation, including the conventional meteorological elements and turbulent flux, enabled this study to evaluate the sea ice surface energy budget process. Using in situ observations, three different reanalysis datasets from the European Centre for Medium-Range Weather Forecasts Interim Re-analysis(ERA-Interim), National Centers for Environmental Prediction Reanalysis2(NCEP R2), and Japanese 55-year Reanalysis(JRA55), and the Los Alamos sea ice model, CICE, output for surface fluxes were evaluated. The observed sensible heat flux(SH) and net longwave radiation showed seasonal variation with increasing temperature. Air temperature rose from the middle of October as the solar elevation angle increased.The ice surface lost more energy by outgoing longwave radiation as temperature increased, while the shortwave radiation showed obvious increases from the middle of October. The oceanic heat flux demonstrated seasonal variation and decreased with time, where the average values were 21 W/m^(2) and 11 W/m^(2), before and after August,respectively. The comparisons with in situ observations show that, SH and LE(latent heat flux) of JRA55 dataset had the smallest bias and mean absolute error(MAE), and those of NCEP R2 data show the largest differences.The ERA-Interim dataset had the highest spatial resolution, but performance was modest with bias and MAE between JRA55 and NCEP R2 compare with in situ observation. The CICE results(SH and LE) were consistent with the observed data but did not demonstrate the amplitude of inner seasonal variation. The comparison revealed better shortwave and longwave radiation stimulation based on the ERA-Interim forcing in CICE than the radiation of ERA-Interim. The average sea ice temperature decreased in June and July and increased after September,which was similar to the temperature measured by buoys, with a bias and MAE of 0.9℃ and 1.0℃, respectively.展开更多
基金the National Key R&D Program of China(Grant No.2018YFA0605901)the National Natural Science Foundation of China(Grant No.41775089)+1 种基金the National Key R&D Program of China(Grant No.2017YFC1502304)the Partnership for Education and Cooperation in Operational Oceanography(PECO_(2))project awarded by the Research Council of Norway(111280).
文摘In this study,we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6(CICE6)to investigate the model sensitivity to two Ice-Ocean(IO)boundary condition approaches.One is the two-equation approach that treats the freezing temperature as a function of the ocean mixed layer(ML)salinity,using two equations to parametrize the IO heat exchanges.Another approach uses the salinity of the IO interface to define the actual freezing temperature,so an equation describing the salt flux at the IO interface is added to the two-equation approach,forming the so-called three-equation approach.We focus on the impact of the three-equation boundary condition on the IO heat exchange and associated basal melt/growth of the sea ice in the Arctic Ocean.Compared with the two-equation simulation,our three-equation simulation shows a reduced oceanic turbulent heat flux,weakened basal melt,increased ice thickness,and reduced sea surface temperature(SST)in the Arctic.These impacts occur mainly at the ice edge regions and manifest themselves in summer.Furthermore,in August,we observed a downward turbulent heat flux from the ice to the ocean ML in two of our three-equation sensitivity runs with a constant heat transfer coefficient(0.006),which caused heat divergence and congelation at the ice bottom.Additionally,the influence of different combinations of heat/salt transfer coefficients and thermal conductivity in the three-equation approach on the model simulated results is assessed.The results presented in this study can provide insight into sea ice model sensitivity to the three-equation IO boundary condition for coupling the CICE6 to climate models.
基金The National Key R&D Program of China under contract No. 2018YFA0605903the National Natural Science Foundation of China under contract Nos 41941009, 41922044 and 41876212the Guangdong Basic and Applied Basic Research Foundation under contract No. 2020B1515020025。
文摘Long term in situ atmospheric observation of the landfast ice nearby Zhongshan Station in the Prydz Bay was performed from April to November 2016. The in situ observation, including the conventional meteorological elements and turbulent flux, enabled this study to evaluate the sea ice surface energy budget process. Using in situ observations, three different reanalysis datasets from the European Centre for Medium-Range Weather Forecasts Interim Re-analysis(ERA-Interim), National Centers for Environmental Prediction Reanalysis2(NCEP R2), and Japanese 55-year Reanalysis(JRA55), and the Los Alamos sea ice model, CICE, output for surface fluxes were evaluated. The observed sensible heat flux(SH) and net longwave radiation showed seasonal variation with increasing temperature. Air temperature rose from the middle of October as the solar elevation angle increased.The ice surface lost more energy by outgoing longwave radiation as temperature increased, while the shortwave radiation showed obvious increases from the middle of October. The oceanic heat flux demonstrated seasonal variation and decreased with time, where the average values were 21 W/m^(2) and 11 W/m^(2), before and after August,respectively. The comparisons with in situ observations show that, SH and LE(latent heat flux) of JRA55 dataset had the smallest bias and mean absolute error(MAE), and those of NCEP R2 data show the largest differences.The ERA-Interim dataset had the highest spatial resolution, but performance was modest with bias and MAE between JRA55 and NCEP R2 compare with in situ observation. The CICE results(SH and LE) were consistent with the observed data but did not demonstrate the amplitude of inner seasonal variation. The comparison revealed better shortwave and longwave radiation stimulation based on the ERA-Interim forcing in CICE than the radiation of ERA-Interim. The average sea ice temperature decreased in June and July and increased after September,which was similar to the temperature measured by buoys, with a bias and MAE of 0.9℃ and 1.0℃, respectively.