为了解决设备相关颜色空间CMYK与设备无关颜色空间之间的相互转换问题,利用小脑模型神经网络(cerebellar model articulation controller,CMAC)高度非线性拟合能力,研究CMYK颜色空间与CIE L*a*b*之间的转换关系,研究结果显示该方法具有...为了解决设备相关颜色空间CMYK与设备无关颜色空间之间的相互转换问题,利用小脑模型神经网络(cerebellar model articulation controller,CMAC)高度非线性拟合能力,研究CMYK颜色空间与CIE L*a*b*之间的转换关系,研究结果显示该方法具有结构简单,易于软件和硬件的实现,将IT8.7/3标准色靶文件中104个专业色块值作为检验样本,检验样本的平均色差为1.6,完全适用于两种不同颜色空间之间的转换过程.展开更多
Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in...Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.展开更多
文摘为了解决设备相关颜色空间CMYK与设备无关颜色空间之间的相互转换问题,利用小脑模型神经网络(cerebellar model articulation controller,CMAC)高度非线性拟合能力,研究CMYK颜色空间与CIE L*a*b*之间的转换关系,研究结果显示该方法具有结构简单,易于软件和硬件的实现,将IT8.7/3标准色靶文件中104个专业色块值作为检验样本,检验样本的平均色差为1.6,完全适用于两种不同颜色空间之间的转换过程.
基金supported by research grants 073-0731674-1673,073-0731674-0841 and 073‐0730463-0203 from Ministry of Science,Education and Sports,Republic of Croatia
文摘Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.