This paper describes the use of steady-state solar simulator for CIGS thin-film photovoltaic module hot-spot endurance test. In the study, not only are test procedures of hot-spot endurance test in IEC 61646 discussed...This paper describes the use of steady-state solar simulator for CIGS thin-film photovoltaic module hot-spot endurance test. In the study, not only are test procedures of hot-spot endurance test in IEC 61646 discussed, but also how to evaluate the performance of steady-state solar simulator by IEC 60904-9 is presented. Three CIGS thin-film PV modules with the same types are used for hot-spot endurance test in case study. It is found that some of the cell damages and visual defects on tested PV modules are clearly observed.展开更多
In order to achieve low cost high efficiency thin film solar cells,a novel Semiconductor Photovoltaic (PV) active material CuIn 1-x Ga x Se 2 (CIGS) and thin film Electro Deposition (ED) technology is explored.Firstly...In order to achieve low cost high efficiency thin film solar cells,a novel Semiconductor Photovoltaic (PV) active material CuIn 1-x Ga x Se 2 (CIGS) and thin film Electro Deposition (ED) technology is explored.Firstly,the PV materials and technologies is investigated,then the detailed experimental processes of CIGS/Mo/glass structure by using the novel ED technology and the results are reported.These results shows that high quality CIGS polycrystalline thin films can be obtained by the ED method,in which the polycrystalline CIGS is definitely identified by the (112),(204,220) characteristic peaks of the tetragonal structure,the continuous CIGS thin film layers with particle average size of about 2μm of length and around 1 6μm of thickness.The thickness and solar grade quality of CIGS thin films can be produced with good repeatability.Discussion and analysis on the ED technique,CIGS energy band and sodium (Na) impurity properties,were also performed.The alloy CIGS exhibits not only increasing band gap with increasing x ,but also a change in material properties that is relevant to the device operation.The beneficial impurity Na originating from the low cost soda lime glass substrate becomes one prerequisite for high quality CIGS films.These novel material and technology are very useful for low cost high efficiency thin film solar cells and other devices.展开更多
Copper indium gallium selenide(CIGS)is a commercialized,high-efficiency thin-film photovoltaic(PV)technology.The state-of-theart energy yield models for this technology have a significant normalized root mean square e...Copper indium gallium selenide(CIGS)is a commercialized,high-efficiency thin-film photovoltaic(PV)technology.The state-of-theart energy yield models for this technology have a significant normalized root mean square error(nRMSE)on power estimation:De Soto model—26.7%;PVsyst model—12%.In this work,we propose a physics-based electrical model for CIGS technology which can be used for system-level energy yield simulations by people across the PV value chain.The model was developed by considering models of significant electrical current pathways from literature and adapting it for the system-level simulation.We improved it further by incorporating temperature and irradiance dependence of parameters through characterisation at various operating conditions.We also devised a module level,non-destructive characterization strategy based on readily available measurement equipment to obtain the model parameters.The model was validated using the measurements from multiple commercial modules and has a significantly lower power estimation nRMSE of 1.2%.展开更多
文摘This paper describes the use of steady-state solar simulator for CIGS thin-film photovoltaic module hot-spot endurance test. In the study, not only are test procedures of hot-spot endurance test in IEC 61646 discussed, but also how to evaluate the performance of steady-state solar simulator by IEC 60904-9 is presented. Three CIGS thin-film PV modules with the same types are used for hot-spot endurance test in case study. It is found that some of the cell damages and visual defects on tested PV modules are clearly observed.
基金Project Supported by the Innovation and Technology Fund ( ITF ) of The Government of The Hong Kong Special Administrative Region ( HK-SAR)China( Fund Grant Num ber:S/ P0 0 5 / 99)
文摘In order to achieve low cost high efficiency thin film solar cells,a novel Semiconductor Photovoltaic (PV) active material CuIn 1-x Ga x Se 2 (CIGS) and thin film Electro Deposition (ED) technology is explored.Firstly,the PV materials and technologies is investigated,then the detailed experimental processes of CIGS/Mo/glass structure by using the novel ED technology and the results are reported.These results shows that high quality CIGS polycrystalline thin films can be obtained by the ED method,in which the polycrystalline CIGS is definitely identified by the (112),(204,220) characteristic peaks of the tetragonal structure,the continuous CIGS thin film layers with particle average size of about 2μm of length and around 1 6μm of thickness.The thickness and solar grade quality of CIGS thin films can be produced with good repeatability.Discussion and analysis on the ED technique,CIGS energy band and sodium (Na) impurity properties,were also performed.The alloy CIGS exhibits not only increasing band gap with increasing x ,but also a change in material properties that is relevant to the device operation.The beneficial impurity Na originating from the low cost soda lime glass substrate becomes one prerequisite for high quality CIGS films.These novel material and technology are very useful for low cost high efficiency thin film solar cells and other devices.
基金supported by the Kuwait Foundation for the Advancement of Sciences (KFAS)under project number CN18-15EE-01by Flanders Innovation&Entrepreneurship and Flux50 under project DAPPER,HBC.2020.2144.
文摘Copper indium gallium selenide(CIGS)is a commercialized,high-efficiency thin-film photovoltaic(PV)technology.The state-of-theart energy yield models for this technology have a significant normalized root mean square error(nRMSE)on power estimation:De Soto model—26.7%;PVsyst model—12%.In this work,we propose a physics-based electrical model for CIGS technology which can be used for system-level energy yield simulations by people across the PV value chain.The model was developed by considering models of significant electrical current pathways from literature and adapting it for the system-level simulation.We improved it further by incorporating temperature and irradiance dependence of parameters through characterisation at various operating conditions.We also devised a module level,non-destructive characterization strategy based on readily available measurement equipment to obtain the model parameters.The model was validated using the measurements from multiple commercial modules and has a significantly lower power estimation nRMSE of 1.2%.