In this paper, we investigate the effect of layer thickness on the residual stresses of copper indium gallium diselenide (CIGS) solar cells with polyimide substrate caused by CIGS layer deposition at 400?C and then co...In this paper, we investigate the effect of layer thickness on the residual stresses of copper indium gallium diselenide (CIGS) solar cells with polyimide substrate caused by CIGS layer deposition at 400?C and then cooling down to room temperature using the Finite Element Method (FEM). Moreover, we also examined the effect of layer thickness on residual stress of CIGS solar cells after cooling down to room temperature from the hotspot temperatures of 200?C, 300?C, and 400?C. Our simulated CIGS is composed of five layers: ZnO, CdS, CIGS, Mo, and PI substrate. We were able to quantify the effect of each layer’s thickness and hotspot temperature on the average stresses of each layer for the CIGS solar cells. We found that the PI substrate layer has the most significant effect on the residual stress of CIGS solar cells. Our simulation results reveal that the stress type (tensile vs. compressive) and the magnitude of stress of the CIGS layer (main absorber layer) can be controlled by changing the thickness of the PI substrate while applying a heat to CIGS solar cells. Quantitative analysis of relationship between layer thickness and thermo-mechanical stress of thin film solar cells can help solar cell manufacturers design more robust and reliable solar cells. For example, fabricating PI layer thickness less than 17 μm can improve the performance of CIGS solar cells by nullifying the compressive residual stress in the CIGS absorber layer.展开更多
Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric functio...Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric function spectra of thin film solar cell components. These spectra can then be utilized to analyze the structure of complete thin film solar cells. Optical and structural/compositional models of complete solar cells developed through least squares regression analysis of the SE data acquired for the complete cells enable simulations of external quantum efficiency (EQE) without the need for variable parameters. Such simulations can be compared directly with EQE measurements. From these comparisons, it becomes possible to understand in detail the origins of optical and electronic gains and losses in thin film photovoltaics (PC) technologies and, as a result, the underlying performance limitations. In fact, optical losses that occur when above-bandgap photons are not absorbed in the active layers can be distinguished from electronic losses when electron-hole pairs generated in the active layers are not collected. This overall methodology has been applied to copper indium-gallium diselenide (Culn1-xGaxSe2; CIGS) solar cells, a key commercialized thin film PV technology. CIGS solar cells with both standard thickness (〉2 μm) and thin (〈1 μm) absorber layers are studied by applying SE to obtain inputs for EQE simulations and enabling comparisons of simulated and measured EQE spectra. SE data analysis is challenging for CIGS material components and solar cells because of the need to develop an appropriate (ε1, ε2) database for the CIGS alloys and to extract absorber layer Ga profiles for accurate structural/compositional models. For cells with standard thickness absorbers, excellent agreement is found between the simulated and measured EQE, the latter under the assumption of 100% collection from the active layers, which include the CIGS bulk and CIGS/CdS heterojunction interface layers. For cells with thin absorbers, however, an observed difference between the simulated and measured EQE can be attributed to losses via carrier recombination within a- 0.15 μm thickness of CIGS adjacent to the Mo back contact. By introducing a carrier collection probability profile into the simulation, much closer agreement is obtained between the simulated and measured EQE. In addition to the single spot capability demonstrated in this study, ex-situ SE can be applied as well to generate high resolution maps of thin film multilayer structure, component layer properties and their profiles, as well as short-circuit current density predictions. Such mapping is possible due to the high measurement speed of 〈1 s per ( , 4) spectra achievable by the multichannel ellipsometer.展开更多
As one of the most promising solutions for the green energy, thin-film photovoltaic cell technology is still immature and far from large-scale industrialization. The major issue is getting low cost and stable module e...As one of the most promising solutions for the green energy, thin-film photovoltaic cell technology is still immature and far from large-scale industrialization. The major issue is getting low cost and stable module efficiency. To solve these problems, a large amount of advanced solar materials have been developed to improve all parts of solar cell modules. Here, some new solar material developments applied in different critical parts of chalcogenide thin-film photovoltaic cells are reviewed. The main efforts are focused on improving light trapping and antireflection, internal quantum efficiency and collection of photo-generated carriers.展开更多
文摘In this paper, we investigate the effect of layer thickness on the residual stresses of copper indium gallium diselenide (CIGS) solar cells with polyimide substrate caused by CIGS layer deposition at 400?C and then cooling down to room temperature using the Finite Element Method (FEM). Moreover, we also examined the effect of layer thickness on residual stress of CIGS solar cells after cooling down to room temperature from the hotspot temperatures of 200?C, 300?C, and 400?C. Our simulated CIGS is composed of five layers: ZnO, CdS, CIGS, Mo, and PI substrate. We were able to quantify the effect of each layer’s thickness and hotspot temperature on the average stresses of each layer for the CIGS solar cells. We found that the PI substrate layer has the most significant effect on the residual stress of CIGS solar cells. Our simulation results reveal that the stress type (tensile vs. compressive) and the magnitude of stress of the CIGS layer (main absorber layer) can be controlled by changing the thickness of the PI substrate while applying a heat to CIGS solar cells. Quantitative analysis of relationship between layer thickness and thermo-mechanical stress of thin film solar cells can help solar cell manufacturers design more robust and reliable solar cells. For example, fabricating PI layer thickness less than 17 μm can improve the performance of CIGS solar cells by nullifying the compressive residual stress in the CIGS absorber layer.
基金supported by the Department of Energy and the National Science Foundation(NSF)under the F-PACE Program,Award Number DE-EE0005400supported by NSF Award EECS-1665172
文摘Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric function spectra of thin film solar cell components. These spectra can then be utilized to analyze the structure of complete thin film solar cells. Optical and structural/compositional models of complete solar cells developed through least squares regression analysis of the SE data acquired for the complete cells enable simulations of external quantum efficiency (EQE) without the need for variable parameters. Such simulations can be compared directly with EQE measurements. From these comparisons, it becomes possible to understand in detail the origins of optical and electronic gains and losses in thin film photovoltaics (PC) technologies and, as a result, the underlying performance limitations. In fact, optical losses that occur when above-bandgap photons are not absorbed in the active layers can be distinguished from electronic losses when electron-hole pairs generated in the active layers are not collected. This overall methodology has been applied to copper indium-gallium diselenide (Culn1-xGaxSe2; CIGS) solar cells, a key commercialized thin film PV technology. CIGS solar cells with both standard thickness (〉2 μm) and thin (〈1 μm) absorber layers are studied by applying SE to obtain inputs for EQE simulations and enabling comparisons of simulated and measured EQE spectra. SE data analysis is challenging for CIGS material components and solar cells because of the need to develop an appropriate (ε1, ε2) database for the CIGS alloys and to extract absorber layer Ga profiles for accurate structural/compositional models. For cells with standard thickness absorbers, excellent agreement is found between the simulated and measured EQE, the latter under the assumption of 100% collection from the active layers, which include the CIGS bulk and CIGS/CdS heterojunction interface layers. For cells with thin absorbers, however, an observed difference between the simulated and measured EQE can be attributed to losses via carrier recombination within a- 0.15 μm thickness of CIGS adjacent to the Mo back contact. By introducing a carrier collection probability profile into the simulation, much closer agreement is obtained between the simulated and measured EQE. In addition to the single spot capability demonstrated in this study, ex-situ SE can be applied as well to generate high resolution maps of thin film multilayer structure, component layer properties and their profiles, as well as short-circuit current density predictions. Such mapping is possible due to the high measurement speed of 〈1 s per ( , 4) spectra achievable by the multichannel ellipsometer.
基金Acknowledgements This work was financially supported by the National Basic Research Program of China (973 Program) (Grant Nos. 2007CB936704 and 2009CB939903), the National Natural Science Foundation of China (Grant Nos. 50902143 and 50821004), and the Science and Technology Commission of Shanghai (Grant Nos. 0752nm016 and 0952nm06500). The authors thank Dr. Yaoming Wang, Dr. De-zeng Li, Dr. Hui Bi, and Mr. Tian-quan Lin for their helpful suggestions.
文摘As one of the most promising solutions for the green energy, thin-film photovoltaic cell technology is still immature and far from large-scale industrialization. The major issue is getting low cost and stable module efficiency. To solve these problems, a large amount of advanced solar materials have been developed to improve all parts of solar cell modules. Here, some new solar material developments applied in different critical parts of chalcogenide thin-film photovoltaic cells are reviewed. The main efforts are focused on improving light trapping and antireflection, internal quantum efficiency and collection of photo-generated carriers.