During the process of archaeological excavation in the regions of Southeast China, collapse of test square usually occurs due to poor site-specific conditions. In this paper, the fast Lagrangian analysis of continua i...During the process of archaeological excavation in the regions of Southeast China, collapse of test square usually occurs due to poor site-specific conditions. In this paper, the fast Lagrangian analysis of continua in three dimensions(FLAC3D) is employed to reveal the behaviors of test square. Taking the archaeological works in Liangzhu prehistoric earthen sites as the research background, the paper first introduces the geological setting, excavation procedure and monitoring scheme of the studied test square. Then, the deformation of four sides of the test square is modeled using FLAC3D. By comparison, it shows that the numerical results are consistent with the results from field monitoring. The result suggests that the numerical simulation can be effectively applied to representing the actual behaviors of the test square,which is helpful for determination of excavation scheme and stability evaluation of the test square during archaeological excavation.展开更多
基金financial support provided by the National Natural Science Foundation of China (Grant No. 51578272)the State Administration of Cultural Heritage "Research Program for Outstanding Youth"(Grant No. 2014224)+1 种基金the National Key Technology R&D Program of China during the Twelfth Five-year Plan Period (Grant No. 2013BAK08B11)the Project on Basic Research of Gansu Province's Innovation Group (Grant No. 145RJIF336)
文摘During the process of archaeological excavation in the regions of Southeast China, collapse of test square usually occurs due to poor site-specific conditions. In this paper, the fast Lagrangian analysis of continua in three dimensions(FLAC3D) is employed to reveal the behaviors of test square. Taking the archaeological works in Liangzhu prehistoric earthen sites as the research background, the paper first introduces the geological setting, excavation procedure and monitoring scheme of the studied test square. Then, the deformation of four sides of the test square is modeled using FLAC3D. By comparison, it shows that the numerical results are consistent with the results from field monitoring. The result suggests that the numerical simulation can be effectively applied to representing the actual behaviors of the test square,which is helpful for determination of excavation scheme and stability evaluation of the test square during archaeological excavation.